
Beautiful Formalizations in Isabelle/Naproche

Adrian De Lonr0000´0002´2697´7253s, Peter Koepker0000´0002´2266´134Xs, Anton
Lorenzen, Adrian Marti, Marcel Schütz, and Erik Sturzenhecker

University of Bonn, Germany, https://www.math.uni-bonn.de/ag/logik/

Abstract. We present short example formalizations of basic theorems
from number theory, set theory, and lattice theory which ship with the
new Naproche component in Isabelle 2021. The natural proof assistant
Naproche accepts input texts in the mathematical controlled natural
language ForTheL. Some ForTheL texts that proof-check in Naproche
come close to ordinary mathematical writing. The formalization exam-
ples demonstrate the potential to write mathematics in a natural yet
completely formal language and to delegate tedious organisatorial de-
tails and obvious proof steps to strong automated theorem proving so
that mathematical ideas and the “beauty” of proofs become visible.

1 Introduction

In informal mathematical discourse one frequently encounters appraisals of the-
orems and proofs as “intuitive”, “elegant”, “interesting”, “simple”, or indeed
“beautiful”. Following Paul Erdős, perfect proofs by these criteria would be
entered in God’s BOOK of proofs [12]. Although mathematicians often agree
about the beauty of particular proofs, mathematical beauty in principle appears
as elusive as the concept of beauty in general. Discussions of beauty by eminent
mathematicians exhibit a spectrum of ad hoc theories and personal opinions
(see, e.g., [18], [22]). A popular view that fits the perspective of this paper is
expressed in [13, p. 22], (but observe [6]):

Mathematicians have customarily regarded a proof as beautiful if it con-
formed to the classical ideals of brevity and simplicity.

This explains that completely formal proofs as studied in formal mathematics
are widely viewed as being the opposite of “beautiful”. Reuben Hersh [5, p. 52],
writes:

We prefer a beautiful proof with a serious gap over a boring hyper-correct
one.

Formal mathematicians themselves acknowledge difficulties with their proofs.
Lawrence Paulson writes:

However, existing theorem provers are unsuitable for mathematics. Their
formal proofs are unreadable. [17]

A closer look, however, reveals that informal proofs usually contain a consid-
erable amount of formality, and that current proof assistants are moving towards
proof languages and proof presentations that are at least “readable” by human
experts. The natural proof assistant Naproche attempts to close the gap be-
tween informal and formal mathematics. Some texts which are proof-checked by
Naproche come close to ordinary mathematical writing. This is further empha-
sized by a new LATEX dialect of the Naproche input language ForTheL which
allows immediate mathematical typesetting of input files. The Naproche project
aims at providing comfortable editing of natural mathematical texts with inte-
grated automated proof checking.
Naproche is included as a bundled component in the latest edition of the

Isabelle prover platform. ForTheL texts in the classic .ftl format or the new
.ftl.tex format can be edited in Isabelle/jEdit and are automatically checked
by Naproche. In this paper we present some formalization examples which are
included in Isabelle 2021. These short texts demonstrate the potential for writing
mathematics in a natural yet completely formal language and to delegate tedious
detail to strong automated theorem proving. The examples present proofs that
can be considered “beautiful”. Some of them follow proofs in THE BOOK [12].

The examples are contained in the folder contrib/naproche-*/examples

within the Isabelle 2021 folder. They cover

– Cantor’s diagonal argument (cantor.ftl.tex, section 3);
– König’s Theorem from cardinal arithmetic (koenig.ftl.tex, section 4);
– the infinitude of primes according to Euclid (euclid.ftl.tex, section 5)
– ... and according to Fürstenberg (fuerstenberg.ftl.tex, section 6);
– the Knaster–Tarski fixpoint theorem (tarski.ftl.tex, 7).

Some of these formalizations go back to example texts that Andrei Paskevich
included with his original SAD system ([15] and [16]). The files can be opened
in Isabelle, and PDF-versions are provided for immediate reading. Note that
we have made a few superficial typographic changes to the examples in this
paper to increase legibility. There is always room for further improvements to
the typesetting of texts.

In conclusion: we are certain that natural proof assistants will facilitate the
eventual acceptance of formal mathematics in the wider mathematical commu-
nity. Ideally, proofs should be beautiful and formally correct.

2 Naproche, ForTheL, and LATEX

The Naproche proof assistant stems from two long-term efforts aiming towards
naturalness: the Evidence Algorithm (EA) / System for Automated Deduc-
tion (SAD) projects at the universities of Kiev and Paris [15,16,20,21], and the
Naproche project at Bonn [11,1,3,9]. In Naproche, the ForTheL input language
of SAD has been extended and embedded in LATEX, allowing mathematical type-
setting; the original proof-checking mechanisms have been made more efficient
and varied.

The mathematical controlled language ForTheL has been developed over sev-
eral decades in the Evidence Algorithm (EA) / System for Automated Deduction
(SAD) project. It is carefully designed to approximate the weakly typed natural
language of mathematics whilst being efficiently translatable to the language
of first-order logic. In ForTheL, standard mathematical types are called no-
tions, and these are internally represented as predicates with one distinguished
variable, whilst the other variables are considered as parameters (“types as de-
pendent predicates”). Compared to type systems of standard proof assistants,
this yields a more flexible dependent type system where number systems can be
cumulative (N Ď Q Ď R), and notions can depend on parameters (subsets of N,
divisors of n).

First-order languages of notions, constants, relations, and functions can be
introduced and extended by signature and definition commands. The formaliza-
tion of Euclid’s theorem to be discussed later, sets out like:

Signature. A natural number is a small object.

Let . . .m, n . . . denote natural numbers.

Signature. 0 is a natural number.

...

Signature. m` n is a natural number.

We have extendedNaproche to support a .ftl.tex format, in addition to the
original .ftl format. Files in .ftl.tex format can be processed by Naproche
for logical checking and by LATEX for typesetting.

The LATEX tokenizer ignores everything except what is inside forthel envi-
ronments of the form

\begin{forthel}
% Insert what you want Naproche to process here

\end{forthel}

Inside a forthel environment, standard LATEX syntax can be used for declaring
text environments for theorems and definitions.

In Naproche, users can define their own operators and phrases through
patterns of words and symbols. This mechanism has been adapted to allow
LATEX constructs in patterns. In the Euclid example we shall use the pattern
\Set{p}{1}{r} for the finite set tp1, . . . , pru. By also defining \Set as a LATEX
macro we can arrange that the ForTheL pattern will be printed out in familiar
set notation:

\newcommand{\Set}[3]{\{#1 {#2}, \dots,#1 {#3}\}}

There are some primitive concepts in Naproche, such as the logical operators
_, ^, D that are directly recognized in the LATEX source and expanded to corre-
sponding internal tokens.

3 Example: Cantor’s Theorem

In this section we prove Cantor’s famous theorem, by which the powerset of a set
has strictly greater cardinality than the given set. The proof rests on Cantor’s
beautiful diagonal argument which is also used in THE BOOK [12] to show that
the set of real numbers is not countable.

Our formalization is so short, that we can include it in its entirety and use it to
remark on further features of Naproche and ForTheL. More information can be
found in a short tutorial introduction to Naproche in the file TUTORIAL.ftl.tex
in the examples folder.

[synonym subset/-s] [synonym surject/-s]

Let M denote a set. Let f denote a function.

Axiom 1 M is setsized.

Axiom 2 Let x be an element of M . Then x is setsized.

Let the value of f at x stand for fpxq. Let f is defined on M stand for
Dompfq “M . Let the domain of f stand for Dompfq.

Axiom 3 The value of f at any element of the domain of f is a set.

Definition 1 (Subset). A subset of M is a set N such that every element of
N is an element of M .

Definition 2. The powerset of M is the class of subsets of M .

Axiom 4 The powerset of M is a set.

Definition 3. f surjects onto M iff every element of M is equal to the value of
f at some element of the domain of f .

Theorem 1 (Cantor). No function that is defined on M surjects onto the
powerset of M .

Proof. Proof by contradiction. Assume the contrary. Take a function f that is
defined on M and surjects onto the powerset of M . Define

N “ tx PM | x R fpxqu.

Take an element z of M such that fpzq “ N . Then

z P N Ø z R fpzq “ N.

Contradiction. �

Remarks:

1. This formalization, like the subsequent examples, is a self-contained natu-
ral language representation of a collection of first-order assumptions and conse-
quences. Except for some built-in notions and axioms the whole logical scenario
has to be set up explicitly. Future versions of Naproche will contain libraries of
foundational theories which can be imported into formalizations.

2. The simple grammar of Naproche and ForTheL is directed towards the
identification of first-order logical content. Writing grammatically correct En-
glish is possible (and encouraged) but not enforced by the system. [synonym
subset/-s] is a parser command that identifies the token “subsets” with the token
“subset”. This allows to choose the correct grammatical number in statements.
Note that Naproche does not have a predefined English vocabulary but works
with arbitrary alphabetic tokens.

3. The notions of “set” and “function” are already coded into Naproche.
Variables like M or f can be pretyped with those notions by, e.g., “Let M
denote a set.”

4. A rudimentary set- and class-theory is built into Naproche. Since classes
can only contain “setsized” elements, we stipulate that every set is setsized by
the axiom: “M is setsized.” Also elements of sets are setsized by Axiom 2.

5. Naturalness requires to have alternative phrases available for the same
logical entity, so that one may speak of the “value of f at x” instead of fpxq.
Such alternatives are introduced by “Let ... stand for ...” commands.

6. Definitions 1 and 2 define new notions dependent on the pre-typed variable
M for a set.

7. Axiom 4 is the well-known powerset axiom.

8. The short proof of Cantor’s theorem uses the same language as undergrad-
uate texts on basic set theory. A mathematical context is created by “Assume
...”, “Take ...”, or “Define ...” statements. At proof time Naproche checks that
all terms and statements are type-correct: the term fpxq, e.g., spawns the obvi-
ous prover task derived from the assumptions in the definition of fpxq; namely
that x P Dompfq. This task is given to the background ATP eprover which is
able to prove it within the local proof context.

9. Abstraction terms t. . . u are already built into the syntactic mechanisms
of Naproche.

10. Naproche supports familiar proof methods like proofs by cases, by induc-
tion, or, in this case, by contradiction. Internally, these methods influence the
construction of proof tasks.

11. Mathematical typesetting is an important ingredient of the “beauty”
of mathematical texts. Naproche mostly treats LATEX commands as orthogonal
to the logical content of a text and ignores them during parsing. This allows
common layout features like prominently displaying the definition of N or the
final equivalence by \[... \] commands.

4 Example: König’s Theorem

The next example presents an important set-theoretical result about the arith-
metic of cardinals which was proved by Julius König in 1905 [10] The global
proof structure is again a Cantorean diagonal argument.

Mathematical notation greatly contributes to the brevity and aesthetics of
mathematical texts. The “big operator” notation for multiple sums (

ř

) or prod-
ucts (

ś

) with their 2-dimensional arrangement of arguments represents typical
mathematical symbolism.

These terms can be typeset by LATEX macros which by the generous pattern
mechanisms of ForTheL simultaneously stand for first-order functions. The sum
macro is defined by:

\newcommand{\Sum}[2]{\sum_{i \in #2} \val{{#1}_{i}}{}}

\Sum{_}{_} is simultaneously used as a ForTheL pattern for an internal binary
function. The instance \Sum{\kappa}{D} of the pattern typesets as

ř

iPD κi .
The LATEX interpretation of certain ForTheL patterns and the orthogonality

of most LATEX commands to the logical interpretation allow many typographical
effects, according to taste and style.

Theorem. Let κ, λ be sequences of cardinals on D. Assume that for every ele-
ment i of D κi ă λi. Then

ÿ

iPD

κi ă
ź

iPD

λi .

Proof. Proof by contradiction. Assume the contrary. Then
ź

iPD

λi ď
ÿ

iPD

κi .

Take a function G such that 9
Ť

iPDκi is the domain of G and
Ś

iPDλi is the
image of G. Indeed

Ś

iPDλi has an element.
Define

∆piq “ tGppn, iqqpiq | n is an element of κiu for i in D.

For every element f of
Ś

iPDλi for every element i of D fpiq is an element
of λi. For every element i of D λi is a set. For every element i of D for every
element d of ∆piq we have d P λi. For every element i of D ∆piq is a set.

(1) For every element i of D |∆piq| ă λi.
Proof. Let i be an element of D. Define

F pnq “ Gppn, iqqpiq for n in κi.

Then F rκpiqs “ ∆piq. qed.
Define

fpiq “ choose an element v of λiz∆piq in v for i in D.

Then f is an element of
Ś

iPDλi. Take an element j of D and an element m of
κj such that Gppm, jqq “ f . Gppm, jqqpjq is an element of ∆pjq and fpjq is not
an element of ∆pjq. Contradiction. �

5 Example: Euclid’s Theorem

We formalize the very first proof in THE BOOK [12], Euclid’s theorem that
there are infinitely many prime numbers. Before the proof the example sets up
the axiomatic background: a language and axioms for natural numbers, arith-
metic, divisibility and prime numbers, some set theory, and finite sets, sequences
and products. Here we only present the concluding proof, juxtaposing the BOOK
proof (left) and the Naproche proof (right) in order to demonstrate their simi-
larity:

Euclid’s Proof.
For any finite set tp1, . . . , pru of primes,

consider the number n “ p1p2 ¨ ¨ ¨ pr`1.
This n has a prime divisor p.
But p is not one of the pi:

otherwise

p would be a divisor of n and of the
product p1p2 ¨ ¨ ¨ pr,
and thus also of the difference
n´ p1p2 ¨ ¨ ¨ pr “ 1,
which is impossible.
So a finite set tp1, . . . , pru cannot be
the collection of all prime numbers. �

Signature. P is the class of prime
natural numbers.

Theorem (Euclid). P is infinite.

Proof.
Assume that r is a natural number and
p is a sequence of length r and
tp1, . . . , pru is a subclass of P.
(1) pi is a nonzero natural number for
every i such that 1 ď i ď r.
Consider n “ p1 ¨ ¨ ¨ pr ` 1.
Take a prime divisor q of n.
Let us show that q ‰ pi for all i such
that 1 ď i ď r.
Proof by contradiction. Assume that
q “ pi for some natural number i such
that 1 ď i ď r.
q is a divisor of n and q is a divisor of
p1 ¨ ¨ ¨ pr (by factor property, 1).
Thus q divides 1.

Contradiction. qed.
Hence tp1, . . . , pru is not the class of
prime natural numbers. �

6 Example: Fürstenberg’s Topological Proof

In 1955 Hillel Fürstenberg published another proof of the infinitude of primes
using the language of topology. [4]. Paskevich provided a version of this proof as
a ForTheL example in SAD [14] which we translated to ForTheL’s LATEX dialect
in the course of the release of Isabelle 2021 [7]. Here is the concluding theorem
and proof, taken directly from the example file in Isabelle 2021.

Theorem (Fuerstenberg). Let S “ trZ` 0 | r is a primeu. S is infinite.

Proof. Proof by contradiction. S is a family of integer sets.

We have
Ť

S “ t1,´1u.
Proof. Let us show that for any integer n n belongs to

Ť

S iff n has a prime
divisor. Let n be an integer.

If n has a prime divisor then n belongs to
Ť

S.
Proof. Assume n has a prime divisor. Take a prime divisor p of n. pZ ` 0 is
setsized. pZ` 0 P S. n P pZ` 0. Qed.

If n belongs to
Ť

S then n has a prime divisor.
Proof. Assume n belongs to

Ť

S. Take a prime r such that n P rZ` 0. Then r
is a prime divisor of n. Qed. End. Qed.

Assume that S is finite. Then
Ť

S is closed and
Ť

S is open.

Take p such that pZ` 1 Ď
Ť

S.

pZ` 1 has an element x such that neither x “ 1 nor x “ ´1.
Proof. 1 ` p and 1 ´ p are integers. 1 ` p and 1 ´ p belong to pZ ` 1. Indeed
1 ` p “ 1 pmod pq and 1 ´ p “ 1 pmod pq. 1 ` p ‰ 1 ^ 1 ´ p ‰ 1. 1 ` p ‰
´1_ 1´ p ‰ ´1. Qed.

We have a contradiction. �

In 2020 Manuel Eberl published an Isar version of Fürstenberg’s proof in the
Archive of Formal Proofs [2]. In this section we will discuss the formalization in
ForTheL’s LATEX dialect and compare it with Eberl’s Isar version.

Let us start with the statement.

Theorem. There are infinitely many primes.

Despite its apparent simplicity, it is not as easy as it seems to formalize it.
Even the natural formal language ForTheL cannot capture it. The problem is
the quantification “there are infinitely many“. We reformulate the statement in
terms of the cardinality of the set of primes as in the Isar formalization:

Theorem. infinite tp :: nat. prime pu

Here we have a unary predicate infinite with an argument tp :: nat. prime pu.
In ForTheL however we cannot pass class terms as parameters to predicates,
hence we cannot adopt the Isar statement literally to ForTheL. So what we have
to state instead is the following:

Theorem. Let S “ tr | r is a primeu. S is infinite.

In fact Paskevich’s formalization of Fürstenberg’s proof does not provide a
full axiomatization of integers or even a general notion of infinity, and rather
proves the infinitude of the set tpZ | p is a primeu. The ForTheL theorem thus
reads:

Theorem. Let S “ trZ` 0 | r is a primeu. S is infinite.

Note that we cannot write rZ instead of rZ` 0. For our formalization intro-
duces the pattern qZ ` a for arbitrary integers a, q (where q is supposed to be
non-zero). If we would additionally define the pattern qZ as qZ`0 thenNaproche
could not figure out the meaning of qZ ` 0. It could either refer to the pattern
pxZ` yqrq{x, 0{ys or to the pattern px` yqrqZ{x, 0{ys, where rt{x, t1{ys denotes
substitution of x by t and of y by t1. The further development of Naproche will
have mechanisms to disambiguate such overloadings.

Let us continue our comparison of the Isar version of Fürstenberg’s proof
with the ForTheL version. The Isar proof begins with the following statements:

assume fin: finite tp :: nat. prime pu
define A where A “ p

Ť

p P tp :: nat. prime pu.arith-prog-fb 0 pq
have closed A
...
hence open p´Aq

Here arith-prof-fb 0 p denotes the set pZ`0 and ´A denotes the complement
of A in Z. In ForTheL we can directly write pZ ` 0 which allows for a better
intuitive understanding of the proof text:

Let S “ trZ` 0 | r is a primeu.
...
Assume that S is finite. Then

Ť

S is closed and
Ť

S is open.

Up to now both proof texts are quite similar (if we “‘identify” a prime p
with the set pZ` 0), except that ForTheL uses natural language constructs like
subject-predicate-object sentences. The central part of Fürstenberg’s proof is to
show that

ď

tpZ` 0 | p is primeu “ Zzt1,´1u

(as in the Isar version) or, equivalently, that

ď

trZ` 0 | r is a primeu “ tn P Z | n has a prime divisoru

(as in the ForTheL version). Let us first have a look at how the statement
Zzt1,´1u Ď

Ť

tpZ` 0 | p is primeu is proven in the Isar text.

fix x :: int assume x : x P ´t1,´1u
...
show x P p

Ť

p P tp :: nat. prime pu. arith-prog 0 pq
...
obtain p where p : prime p p dvd x
using prime-divisor-existsrof xs and x|x| ‰ 1y by auto
hence x P arith-prog 0 pnat pq using prime-gt-0-introf ps
by (auto simp: arith-prog-def cong-0-iff)
thus ?thesis using p
by (auto simp: A-def intro!: exI rof - nat ps)

On the other hand the proof of the statement tn P Z | n has a prime divisoru Ď
Ť

tpZ` 0 | p is primeu looks like the following in ForTheL.

Let n be an integer.
...
If n has a prime divisor then n belongs to

Ť

S.
Proof. Assume n has a prime divisor. Take a prime divisor p of n. n P
pZ` 0. Qed.

Note that in both versions we silently assumed that x ‰ 0 and n ‰ 0,
respectively.

In principle, both proofs are similar. But whereas Isabelle uses proof tactics
to search for proofs, Naproche relies on an external ATP. Users of Isabelle can
steer proof search efficiently by commands like

by (auto simp: A-def intro!: exI rof - nat ps)

On the other hand one would not want to see such technicalities in a natural or
even “beautiful” proof à la Naproche. As a future project we shall investigate
whether Naproche can reach a similar prover efficiency by using sledgehammer
methods to steer external ATPs.

Finally, let us compare the statement discussed above to its original formu-
lation in THE BOOK [12]:

Since any number n ‰ 1,´1 has a prime divisor p, and hence is contained
in N0,p, we conclude

Zzt1,´1u “
ď

pPP
N0,p.

Here P denote the set of prime numbers and N0,p the set pZ` 0. Obviously
this is a very elegant formulation compared to Isar and ForTheL, paying the price
of a quite complicated sentence structure as a combination of three statements
with internal dependencies:

Since ϕ, and hence ψ, we conclude χ.

Moreover, there are hidden variables, e.g. n occurs in ψ without being explicitly
mentioned, and implicit variable bindings, e.g. p is not free in ψ as it might seem
if we consider ψ being independent from ϕ. Parsing such sentences is beyond the
possibilities of the current Naproche, and it will have to be discussed if one
would even want this level of grammatical complication in an efficient controlled
natural language for mathematics.

7 Example: Knaster–Tarski

The Knaster–Tarski theorem is a result from lattice theory about fixed points of
monotone functions. Bronis law Knaster and Alfred Tarski established it in 1928

for the special case of power set lattices [8]. This more general result was stated
by Tarski in 1955 [19].

The theorem states that the set of fixpoints of a monotone function on a
complete lattice is also a complete lattice. In particular, we can take the supre-
mum or the infimum of the empty set in order to get the biggest or the smallest
fixpoint. We see that the Knaster–Tarski theorem is considerably stronger than
a mere statement about the existence of fixpoints.

The full formalization starts by defining a complete lattice, a monotone func-
tion and a fixpoint. The formalized proof relies on automation to achieve a nat-
ural brevity.

Theorem (Knaster–Tarski). Let U be a complete lattice and f be a monotone
function on U . Let S be the class of fixed points of f . Then S is a complete lattice.

Proof. Let T be a subset of S.
Let us show that T has a supremum in S.
Define

P “ tx P U | fpxq ď x and x is an upper bound of T in Uu.

Take an infimum p of P in U . fppq is a lower bound of P in U and an upper
bound of T in U . Hence p is a fixed point of f and a supremum of T in S.
End.
Let us show that T has an infimum in S.
Define

Q “ tx P U | fpxq ď x and x is an lower bound of T in Uu.

Take a supremum q of Q in U . fpqq is an upper bound of Q in U and a lower
bound of T in U . Hence q is a fixed point of f and an infimum of T in S.
End. �

8 Outlook

The Naproche project will continue to expand the methods presented in this
paper. We shall enlarge our grammar to capture more natural language phrases.
Recurrent notions and notations will be predefined in library files. Tuning the
background ATP for the demands of Naproche checking will allow to make
further proof steps implicit and make it easier to follow existing natural texts.

This approach will have to prove its value by further, more comprehensive
formalizations and by interlinked libraries of natural formalizations.

References

1. Marcos Cramer. Proof-checking mathematical texts in controlled natural language.
PhD thesis, University of Bonn, 2013.

2. Manuel Eberl. Furstenberg’s topology and his proof of the infini-
tude of primes. Archive of Formal Proofs, March 2020. https://isa-
afp.org/entries/Furstenberg Topology.html, Formal proof development.

3. Steffen Frerix and Peter Koepke. Automatic proof-checking of ordinary mathemat-
ical texts. Proceedings of the Workshop Formal Mathematics for Mathematicians,
2018.

4. Hillel Fürstenberg. On the infinitude of primes. American Mathematical Monthly,
62(5):353, 1955.

5. R. Hersh. What is Mathematics, Really? Oxford University Press, 1997.
6. Matthew Inglis and Andrew Aberdein. Beauty is not simplicity: An analysis of

mathematicians’ proof appraisals. Philosophia Mathematica, 23:87–109, 02 2014.
7. Isabelle contributors. The Isabelle2021 release, February 2021.
8. Bronis law Knaster and Alfred Tarski. Un théorème sur les fonctions d’ensembles.

Annales de la Société Polonaise de Mathématique, 6:133–134, 1928.
9. Peter Koepke. Textbook mathematics in the Naproche-SAD system. Joint Pro-

ceedings of the FMM and LML Workshops, 2019.
10. Julius König. Zum Kontinuumsproblem. Mathematische Annalen, 60:177–180,

1905.
11. Daniel Kühlwein, Marcos Cramer, Peter Koepke, and Bernhard Schröder. The

Naproche system, 2009.
12. Günter M. Ziegler Martin Aigner. Proofs from THE BOOK. Springer-Verlag, 4th

edition, 2009.
13. James W McAllister. Mathematical beauty and the evolution of the standards

of mathematical proof. In Micheleed Emmer, editor, The Visual Mind II, pages
15–34. Cambridge, Mass.: MIT Press, 2005.

14. Andrei Paskevich. Fürstenbeg’s proof in SAD.
15. Andrei Paskevich. Méthodes de formalisation des connaissances et des raison-

nements mathématiques: aspects appliqués et théoriques. PhD thesis, Université
Paris 12, 2007.

16. Andrei Paskevich. The syntax and semantics of the ForTheL language, 2007.
17. L. C. Paulson. Alexandria: Large-scale formal proof for the working mathematician,

2018.
18. Gian-Carlo Rota. The phenomenology of mathematical beauty. Synthese,

111(2):171–182, 1997.
19. Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5(2):285–309, 1955.
20. Konstantin Verchinine, Alexander Lyaletski, and Andrei Paskevich. System for

automated deduction (SAD): a tool for proof verification. Automated Deduction–
CADE-21, pages 398–403, 2007.

21. Konstantin Verchinine, Alexander Lyaletski, Andrei Paskevich, and Anatoly Anisi-
mov. On correctness of mathematical texts from a logical and practical point of
view. In International Conference on Intelligent Computer Mathematics, pages
583–598. Springer, 2008.

22. David Wells. Are these the most beautiful? The Mathematical Intelligencer, 12:37–
41, 09 1990.

