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Abstract Naproche is an emerging natural proof assistant that accepts
input in the controlled natural language ForThel.. Naproche is included
in the current version of the Isabelle/PIDE which allows comfortable
editing and asynchronous proof-checking of ForTheL. texts. The .tex
dialect of ForTheL can be typeset by IXTEX into documents that approx-
imate the language and appearance of ordinary mathematical texts.

1 Introduction

Naproche (for Natural Proof Checking) is an emerging natural proof assistant
that accepts input in a controlled natural language, approximating ordinary

mathematical language and texts. The system uses

— the dedicated input language ForTheL. (Formula Theory Language),
— natural language processing for texts with symbolic material,

— strong automatic theorem proving (ATP) for filling in implicit or obvious

proof steps.

The current version of Naproche also introduces a ITEX dialect of ForTheL so
that high-quality mathematical typesetting is readily available. Naproche allows
the formalization and proof-checking of advanced mathematics in a style that is
immediately readable by mathematicians. Example formalizations from various

domains of undergraduate mathematics are included.

Naproche ships as a component in the latest release of the Isabelle prover

platform [8]. When editing a ForTheL file in Isabelle/jEdit Prover IDE (PIDE),

there is an auxiliary Naproche server in the background to quickly answer re-
quests for checking ForTheLl. texts, with an internal cache to avoid repeated
checking of unchanged text segments. The implementation uses programming in-
terfaces of Isabelle/PIDE that allow user-defined file formats to participate in the
concurrent document model. A second auxiliary server allows the Naproche pro-
gram to run external prover processes under the control of Isabelle, with explicit

timeouts. This works reliably on the usual platforms (Linux, Windows, macOS)
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by re-using external provers of Isabelle/Sledgehammer [17]. From the perspect-
ive of logic, there is no connection of Naproche with Isabelle/Sledgehammer or
any other Isabelle/HOL tools.

In this paper we briefly discuss the need for natural proof assistants, provide
some general information on Isabelle/Naproche, and give an overview of meth-
ods employed in the system, using an excerpt from a formalization of FEuclid’s
infinitude of primes as a running example. To conclude we compare Naproche to
other projects in formal mathematics with natural language input and indicate
ways to further extend Naproche’s naturalness and efficiency.

2 Natural Proof Assistants

While state-of-the-art interactive theorem provers have been successfully used to
prove and certify highly non-trivial research mathematics, they are still, accord-
ing to Lawrence Paulson [16] “unsuitable for mathematics. Their formal proofs
are unreadable.”

Natural proof assistants intend to bridge the wide gap between intuitive
mathematical texts and the formal rigour of logical calculi. We propose the
following criteria for natural proof assistants:

— Input languages should be close to the mathematical vernacular, includ-
ing support for common grammatical conventions and symbolic expressions.
These languages should support familiar text structurings, such as the usual
definition-theorem-proof style.

— Proofs should consist of natural argumentative phrases for various proof
tactics, allowing for a more declarative style.

— The system should use familiar logics and mathematical ontologies.

— Tedious details and obvious proof gaps should be filled in automatically.

— An intuitive editor should allow for interactive text and theory development,
where incremental proof checking can guide the formalization.

We expect that naturalness will be crucial for the adoption of formal mathem-
atics by the wider mathematical community. This is in line with some ongoing
large-scale projects in formal mathematics. For instance, the ALEXANDRIA
project by Paulson [16] stipulates:

ALEXANDRIA will be based on legible structured proofs. Formal proofs
should be not mere code, but a machine-checkable form of communication
between mathematicians.

The Formal Abstracts project of Thomas Hales [5] intends to

— give a statement of the main theorem of each published mathematical paper
i a language that is both human and machine readable,

— link each term in theorem statements to a precise definition of that term
(again in human/machine readable form).
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3 Isabelle/Naproche

The Naproche proof assistant stems from two long-term efforts aiming towards
naturalness: the Evidence Algorithm (EA) and System for Automated Deduc-
tion (SAD) projects at the universities of Kiev and Paris [14,15,20,21], and
the Naproche project at Bonn [1,2,3,10]. Naproche extends the input language
ForTheL of SAD and embeds it into IATEX, allowing mathematical typesetting;
the original proof-checking mechanisms of SAD have been made more efficient
and varied.

The first experimental integration of the then Naproche-SAD prover into
the Isabelle Prover IDE was done in 2018 by Frerix and Wenzel [23, §1.2]. The
current (refined and extended) version has now become a bundled component
of Isabelle2021 [8]. After downloading and unpacking the Isabelle distribution,
Isabelle/Naproche becomes immediately accessible in the Documentation panel,
section Ezamples, entry $ISABELLE_NAPROCHE/Intro.thy. Isabelle and its add-
on components work directly without manual installation, but this comes at
the cost of substantial resource requirements: on Linux the total size is 1.2 GB,
which includes Java 15 (330 MB), E prover 2.5 (30 MB), and Naproche (20 MB).
The bulk of other Isabelle components are required for Isabelle/HOL theory and
proof development, but Naproche has no logical connection to that.

The Naproche prover is invoked automatically when editing ForThel files
with .ftl or .ftl.tex extensions. Further examples and an introductory tu-
torial are linked in the Isabelle theory file $ISABELLE_NAPROCHE/Intro.thy: as
usual for Isabelle/jEdit and other IDEs, following a link works by a mouse click
combined with the keyboard modifier CTRL (Linux, Windows) or CMD (macOS).
The examples deal with results from undergraduate number theory, geometry,
and set theory; most are available in the classic ASCII style as well as in I TEX
style and typeset in PDF.

The ForTheL library FLib [13] contains a variety of formalizations for earlier
versions of Naproche. Some substantial texts have been written as undergraduate
student projects and cover, e.g., group theory up to Sylow theorems, initial
chapters from Walter Rudin’s Analysis, or set theory up to Silver’s theorem
in cardinal arithmetic. These texts will soon be upgraded to the new version
of Naproche and included in an interlinked formalized library of readable and
proof-checked mathematical texts.

4 Formalizing in ForTheL

4.1 Example

The following screenshot shows a proof of the infinitude of prime numbers in the
Isabelle/Naproche Prover IDE taken from the bundled tutorial which itself is a
proof-checked ForThel text:
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The editor buffer contains the ForTheL source, which also happens to conform
to standard BTEX format. (The “Contradiction” lemma, now deactivated by a %,
is a left-over of a typical check for hidden inconsistencies in the axiomatic setup.)
The Output panel contains feedback from the Naproche prover about the source
document: “verification successful” and some statistics; the most relevant mes-
sages are also shown in-line over the source as squiggly underline with popup on
mouse-hovering. The Sidekick/latex structure overview is provided by standard
plugins of the underlying text editor. This piece of mathematics is typeset by
TEX as follows:

FEuclid’s Theorem

Signature. P is the class of prime natural numbers.

Theorem. P is infinite.

Proof. Assume that r is a natural number and p is a sequence of length r
and {p1,...,p,} is a subclass of P. [..] 0

4.2 The ForTheL Language

The mathematical controlled language ForTheL has been developed over several
decades in the Evidence Algorithm (EA) / System for Automated Deduction
(SAD) project. It is carefully designed to approximate the weakly typed nat-
ural language of mathematics whilst being efficiently translatable to first-order
logic. In ForThelL,, standard mathematical types are called notions, and these
are internally represented as predicates with a distinguished variable, which are
treated as unary predicates with the other variables used as parameters (“types
as predicates”). This leads to a flexible dependent type system where number
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systems can be cumulative (N C R), and notions can depend on parameters
(subsets of N, divisors of n).

First-order languages of notions, constants, relations, and functions can be
introduced and extended by signature and definition commands. The formaliz-
ation of Euclid’s theorem, e.g., sets out like:

Signature. A natural number is a small object.
Let ...m,n... denote natural numbers.
Signature. 0 is a natural number.

Signature. m + n is a natural number.

5 Architecture of the Naproche System

Naproche follows standard principles of interactive theorem proving, but with
a strong emphasis on the naturalness aspects explained above. The general in-
formation processing in the system is described in the following diagram. The
core Naproche program is implemented in Haskell.

ForTheL (ASCII) Text processing { Messages / Logs \:
I
ForThel (TEX) o ° Tokenizing ! Errors, warnings, |
Parsi \ successes, etc. )
e Parsing N Zf _______
o Translation - -
Ontological Checking
g— Identifies ontological
Annotated tree of | o requirements and adds this TPTP E
first-order information to the document .
statements QW Vampire
T annolations | Logical Checking yes/no cte.
Applies basic proof tactics
and prepares tasks for the
external prover

In the sequel we shall describe main components of Naproche.

5.1 Tokenizing and Parsing

INaproche uses a standard tokenizing algorithm for cutting text up into a list of
meaningful tokens, with precise source positions to enable PIDE messages and
markup, e.g., by colours for free and bound variables. When using IXTEX syntax,
the tokenizer also takes care of expanding certain TEX commands (see the next
subsection).

Parsing is carried out in Haskell’s monadic style with parser combinators.
We allow ambiguous parsing, since it better fits natural language. Currently the
translation into tagged first-order logic is already part of the parsing process. The
following translation of our example snippet was obtained by running Naproche
from the command line with the -T (translate) option:
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hypothesis.
assume forall vO ((HeadTerm :: vO = Primes) implies
(aClass(v0) and forall vl (aElementOf(v1,v0)
iff (aNaturalNumber(vl) and isPrime(v1))))).

conjecture Euclid.
isInfinite(Primes).
proof.
assume ((aNaturalNumber (r) and aSequenceOfLength(p,r)) and
aSubset0f (Set{p}{1}{r},Primes)).
n = Prod{pt{1M{r}+1.

In order to make INaproche more versatile we plan on parsing into an abstract
syntax tree instead, so that different logical back-ends could translate into dif-
ferent logics. We have already made some experiments on translating ForTheL.
to Lean [12].

Moreover, with the input language growing, we shall eventually turn to some
grammatical framework to speed up language development without hard-coding
vocabulary or grammar rules into the Naproche code.

5.2 HKTEX Processing

We have extended Naproche to support a .ftl.tex format, in addition to the
original .ftl format. Files in .ftl.tex format are intended to be readable by
both Naproche for logical checking and by ITEX for typesetting.

The ETEX tokenizer ignores the whole document, except what is inside
forthel environments of the form

\begin{forthel}
% Insert what you want Naproche to process here
\end{forthel}

In a forthel environment, standard IXTEX syntax can be used for declaring text
environments for theorems and definitions.

In Naproche, users can define their own operators and phrases by defining lin-
guistic and symbolic patterns. This mechanism has been adapted to allow IXTEX
constructs in patterns. In the Euclid text we use the pattern \Set{p}{1}{r} for
the finite set {p1,...,p,}. By defining \Set as a BTEX macro we can arrange
that the ForTheL pattern will be printed in the familiar set notation:

\newcommand{\Set} [3]{\{#1_{#2},\dots,#1_{#3}\}}

There are some primitive concepts in Naproche, such as the logical operators V,
A, 3 that are directly recognized in the I4TEX source and expanded to corres-
ponding internal tokens.
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The current release of Naproche does not differentiate between math mode
and text mode in XTREX, since it re-uses much of the parsing machinery of the
original . ft1 format. Future releases shall make such a distinction to increase the
robustness of the parser, improve error messages and resolve some ambiguities
in the current grammar.

5.3 Logical Processing

The first-order formulas derived from ForTheL statements are put into an in-
ternal ProofText data type consisting of blocks of formulae, arranged in a tree-
like fashion. The tree structure mirrors the logical structure of a text, where a
statement can be seen as a node to which a subtext, e.g., its proof is attached.
Since statements in a proof can have their own subproofs this leads to a recurs-
ive tree structure, on which the further checking is performed along a depth-first
left-to-right traversal.

5.4 Ontological Checking by the Naproche Reasoner

2 contains a number of

An innocent mathematical statement like a? + b?> = ¢
implicit proof tasks, even if the whole statement is not to be proved, but part of
a definition or an assumption. One has to check that a, b, ¢ are (numerical) terms
to which the squaring operation can be applied, and that the resulting squares
can be subjected to addition and equality. These checks are called “ontological”,
and they roughly correspond to type checking in type-orientated systems. The
situation here is however more complicated, as types (i.e. notions) and operations
may involve first-order definitions with preconditions, which cannot be decided
during the parsing process but only during proof-checking. So in the checking
process each node of the aforementioned tree is first checked ontologically; if the

node formula itself is marked as a conjecture, it is logically checked.

5.5 Logical Checking by the Naproche Reasoner

The various checks are organized by the Naproche reasoner module. In simple
cases the reasoner itself can supply a proof; if not, the reasoner constructs proof
tasks for the ATP. Since definitions in first-order logic are formally symmetric
equivalences, they may lead to circularities in proof searches. Instead definitions
are successively unfolded by replacing the definiendum by the definiens. This
process may be iterated when proof attempts fail.

The ATP is given certain timeouts to search for proofs. Ontological checking
is supposed to be easier than proper mathematical proving. So the default time
for each ontological check is set to 1sec, whereas proving gets 3sec and can be
iterated for several rounds of definition unfolding.
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5.6 Communication with an External ATP

Proof tasks are translated into the generic TPTP first-order format for ATPs.
These can be viewed in the Output window of Isabelle/jEdit, after inserting the
directive [dump on] into the ForTheL source. The final proof task in checking
Euclid’s proof ends with the TPTP lines:

fof (m_,hypothesis, ( ! [WO] : (aClass(WO) =>
(isInfinite(W0) <=> ( ~ isFinite(W0)))))).

fof (m_,hypothesis, (aClass(szPzrzizmzezs) &
(' [WwOo] : (aElementOf (WO,szPzrzizmzezs)
<=> (aNaturalNumber (WO) & isPrime(W0)))))).

fof (m__,conjecture,
(aElementOf (W4,szSzeztlcdtrclczlrclcdtrc(WO,W1)) <=>
(aNaturalNumber (W4) & isPrime(W4))))))))))))) =>
isInfinite(szPzrzizmzezs))) .

By default Naproche uses E prover [19] as external ATP, but one may switch to
other provers available in the Isabelle distribution.

6 Integration into Isabelle

The initial integration of Naproche into the Isabelle Prover IDE happened in
2018 and is briefly reported as an example in the PIDE overview article [23]
based on Isabelle2019 (June 2019). The main idea was to turn the existing
Haskell command-line program into a TCP server that can answer concurrent
requests for checking ForThel. texts in a purely functional manner, with proper
handling of cancel messages (for interrupts caused by user editing); this required
to remove a few low-level system operations, like reading physical files or exit
of the process. Afterwards, the semantic operation forthel file in Isabelle —
to check ForTheL text and produce markup messages according to the PIDE
protocol — was implemented as Isabelle/Isar command in Isabelle/ML as usual,
but the main work is delegated to the Naproche server. Its implementation uses
the Isabelle/Haskell library for common Isabelle/PIDE message formats, source
positions, markup etc. — it is maintained within the Isabelle distribution.

The current version of Isabelle/Naproche refines this approach in various
respects. In particular, Isabelle2021 now provides a standard mechanism for
user-defined Isabelle/Scala services: this is both relevant for Isabelle command-
line tools to build and test Isabelle/Naproche, and the Prover IDE support of
ForTheL files to connect the Isabelle/jEdit front-end to the Naproche back-end.

Moreover, the Java process running the Prover IDE provides an additional
TCP server to launch external provers that are already distributed with Isabelle
(thanks to Isabelle/Sledgehammer): Naproche applications mainly use the cur-
rent E prover 2.5 [19], but SPASS and Vampire are available for experiments.
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The existing management of processes in Isabelle/Scala involves considerable ef-
forts to robustly support interrupts and timeouts in a concurrent environment;
this works on all platforms supported by Isabelle (using special tricks for Win-
dows/Cygwin, and macOS/Rosetta on Apple Silicon).

The documentation file $ISABELLE_NAPROCHE/Intro.thy gives further hints
on implementation near the end, with hyperlinks to the sources. A lot of technical
Isabelle infrastructure is re-used by Isabelle/Naproche, but there is presently no
connection to Isabelle/HOL, which is a much larger and better-known applica-
tion of the same Isabelle framework [18].

7 Related and Future Work

Bridging the gap between mathematical practice and fully formal methods has
always been a central concern in formal mathematics. The development of the
Mizar system [11] was accompanied or even driven by the stepwise adaptation of
its language to standard mathematical proof methods and logical foundations.
In contrast, most interactive theorem provers feature formal tactic languages,
with tactics scripts that can hardly be understood without stepwise tracing and
reconstructing internal logical states.

The Mizar language has been a role model for other proof languages. There
are, e.g., "Mizar modes" for HOL [6,25] and Coq [4] and the widely used Isar
language for Isabelle [24,22]. These language can be read by mathematicians,
with some effort, but they retain a strong bias toward computer science customs.
A survey of input languages for formalization on a scale between formal and
natural can be found in [9].

Only a few formal mathematics projects have aimed at processing actual
mathematical language. These projects have operated in isolation and seem to
be mostly inactive now. The paper [7] by Muhammad Humayoun and Christophe
Raffalli, e.g., describes the MathNat project and also surveys other related at-
tempts.

The Naproche approach can be viewed in the Mizar tradition: use a rich
controlled language for mathematics, increase the proving capabilities by strong
automated theorem proving, and, eventually, create an extensive library of basic
mathematics and specialized theories, which simultaneously can be used as a
library for human readers.

The readability and naturalness of texts which proof-check in the Naproche
system motivate significant further extensions of the project where ad hoc meth-
ods are to be replaced by principled and established approaches:

1. the input language ForTheL has to be extended for wide mathematical
coverage; ForThel needs an extensive formal grammar and vocabulary to be
processed by strong linguistic methods; the vocabulary may also encompass
standard I¥TEX symbols and semantic information;

2. methods of type derivation and elaboration should be provided;

3. Isabelle/Sledgehammer-like methods should lead to efficient premise selec-
tion in large texts and theories;
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4. the creation of libraries of ForThel. documents requires import and ex-
port mechanisms corresponding to quoting and referencing in the mathematical
literature;

5. the natural text processing of Naproche should be interfaced with other
proof assistants to leverage their strengths and libraries. We shall in particular
work on a “INaproche mode” for Isabelle.
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