
The Isabelle/Naproche Natural Language
Proof Assistant

1 University of Bonn, Bonn, Germany, https://www.math.uni-bonn.de/ag/logik
2 Augsburg, Germany, https://sketis.net

Abstract !aproche is an emerging natural proof assistant that accepts
input in the controlled natural language ForTheL. !aproche is included
in the current version of the Isabelle/PIDE which allows comfortable
editing and asynchronous proof-checking of ForTheL texts. The .tex
dialect of ForTheL can be typeset by LATEX into documents that approx-
imate the language and appearance of ordinary mathematical texts.

1 Introduction

!aproche (for Natural Proof Checking) is an emerging natural proof assistant
that accepts input in a controlled natural language, approximating ordinary
mathematical language and texts. The system uses

– the dedicated input language ForTheL (Formula Theory Language),
– natural language processing for texts with symbolic material,
– strong automatic theorem proving (ATP) for filling in implicit or obvious

proof steps.

The current version of !aproche also introduces a LATEX dialect of ForTheL so
that high-quality mathematical typesetting is readily available. !aproche allows
the formalization and proof-checking of advanced mathematics in a style that is
immediately readable by mathematicians. Example formalizations from various
domains of undergraduate mathematics are included.
!aproche ships as a component in the latest release of the Isabelle prover

platform [8]. When editing a ForTheL file in Isabelle/jEdit Prover IDE (PIDE),
there is an auxiliary !aproche server in the background to quickly answer re-
quests for checking ForTheL texts, with an internal cache to avoid repeated
checking of unchanged text segments. The implementation uses programming in-
terfaces of Isabelle/PIDE that allow user-defined file formats to participate in the
concurrent document model. A second auxiliary server allows the !aproche pro-
gram to run external prover processes under the control of Isabelle, with explicit
timeouts. This works reliably on the usual platforms (Linux, Windows, macOS)
c© The Author(s) 2021
A. Platzer and G. Sutcliffe (Eds.): CADE 2021, LNAI 12699, pp. 614 624, 2021.
https://doi.org/10.1007/978-3-030-79876-5_36

Adrian De Lon1 , Peter Koepke1 , Anton Lorenzen1 , Adrian Marti1 ,
Marcel Schütz1 , and Makarius Wenzel2

–

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79876-5_36&domain=pdf
https://www.math.uni-bonn.de/ag/logik
https://sketis.net
http://orcid.org/0000-0002-2697-7253
http://orcid.org/0000-0002-2266-134X
http://orcid.org/0000-0003-3538-9688
http://orcid.org/0000-0001-8932-8843
http://orcid.org/0000-0002-5386-5134
http://orcid.org/0000-0002-3753-8280

by re-using external provers of Isabelle/Sledgehammer [17]. From the perspect-
ive of logic, there is no connection of !aproche with Isabelle/Sledgehammer or
any other Isabelle/HOL tools.

In this paper we briefly discuss the need for natural proof assistants, provide
some general information on Isabelle/Naproche, and give an overview of meth-
ods employed in the system, using an excerpt from a formalization of Euclid’s
infinitude of primes as a running example. To conclude we compare !aproche to
other projects in formal mathematics with natural language input and indicate
ways to further extend !aproche’s naturalness and efficiency.

2 Natural Proof Assistants

While state-of-the-art interactive theorem provers have been successfully used to
prove and certify highly non-trivial research mathematics, they are still, accord-
ing to Lawrence Paulson [16] “unsuitable for mathematics. Their formal proofs
are unreadable.”

Natural proof assistants intend to bridge the wide gap between intuitive
mathematical texts and the formal rigour of logical calculi. We propose the
following criteria for natural proof assistants:

– Input languages should be close to the mathematical vernacular, includ-
ing support for common grammatical conventions and symbolic expressions.
These languages should support familiar text structurings, such as the usual
definition-theorem-proof style.

– Proofs should consist of natural argumentative phrases for various proof
tactics, allowing for a more declarative style.

– The system should use familiar logics and mathematical ontologies.
– Tedious details and obvious proof gaps should be filled in automatically.
– An intuitive editor should allow for interactive text and theory development,

where incremental proof checking can guide the formalization.

We expect that naturalness will be crucial for the adoption of formal mathem-
atics by the wider mathematical community. This is in line with some ongoing
large-scale projects in formal mathematics. For instance, the ALEXANDRIA
project by Paulson [16] stipulates:

ALEXANDRIA will be based on legible structured proofs. Formal proofs
should be not mere code, but a machine-checkable form of communication
between mathematicians.

The Formal Abstracts project of Thomas Hales [5] intends to

– give a statement of the main theorem of each published mathematical paper
in a language that is both human and machine readable,

– link each term in theorem statements to a precise definition of that term
(again in human/machine readable form).

The Isabelle/Naproche Natural Language Prooof Assistant 615

3 Isabelle/Naproche

The !aproche proof assistant stems from two long-term efforts aiming towards
naturalness: the Evidence Algorithm (EA) and System for Automated Deduc-
tion (SAD) projects at the universities of Kiev and Paris [14,15,20,21], and
the Naproche project at Bonn [1,2,3,10]. !aproche extends the input language
ForTheL of SAD and embeds it into LATEX, allowing mathematical typesetting;
the original proof-checking mechanisms of SAD have been made more efficient
and varied.

The first experimental integration of the then Naproche-SAD prover into
the Isabelle Prover IDE was done in 2018 by Frerix and Wenzel [23, §1.2]. The
current (refined and extended) version has now become a bundled component
of Isabelle2021 [8]. After downloading and unpacking the Isabelle distribution,
Isabelle/Naproche becomes immediately accessible in the Documentation panel,
section Examples, entry $ISABELLE_NAPROCHE/Intro.thy. Isabelle and its add-
on components work directly without manual installation, but this comes at
the cost of substantial resource requirements: on Linux the total size is 1.2GB,
which includes Java 15 (330 MB), E prover 2.5 (30 MB), and !aproche (20 MB).
The bulk of other Isabelle components are required for Isabelle/HOL theory and
proof development, but !aproche has no logical connection to that.

The !aproche prover is invoked automatically when editing ForTheL files
with .ftl or .ftl.tex extensions. Further examples and an introductory tu-
torial are linked in the Isabelle theory file $ISABELLE_NAPROCHE/Intro.thy: as
usual for Isabelle/jEdit and other IDEs, following a link works by a mouse click
combined with the keyboard modifier CTRL (Linux, Windows) or CMD (macOS).
The examples deal with results from undergraduate number theory, geometry,
and set theory; most are available in the classic ASCII style as well as in LATEX
style and typeset in PDF.

The ForTheL library FLib [13] contains a variety of formalizations for earlier
versions of!aproche. Some substantial texts have been written as undergraduate
student projects and cover, e.g., group theory up to Sylow theorems, initial
chapters from Walter Rudin’s Analysis, or set theory up to Silver’s theorem
in cardinal arithmetic. These texts will soon be upgraded to the new version
of !aproche and included in an interlinked formalized library of readable and
proof-checked mathematical texts.

4 Formalizing in ForTheL

4.1 Example

The following screenshot shows a proof of the infinitude of prime numbers in the
Isabelle/Naproche Prover IDE taken from the bundled tutorial which itself is a
proof-checked ForTheL text:

616 A. De Lon et al.

The editor buffer contains the ForTheL source, which also happens to conform
to standard LATEX format. (The “Contradiction” lemma, now deactivated by a %,
is a left-over of a typical check for hidden inconsistencies in the axiomatic setup.)
The Output panel contains feedback from the !aproche prover about the source
document: “verification successful” and some statistics; the most relevant mes-
sages are also shown in-line over the source as squiggly underline with popup on
mouse-hovering. The Sidekick/latex structure overview is provided by standard
plugins of the underlying text editor. This piece of mathematics is typeset by
LATEX as follows:

Euclid’s Theorem

Signature. P is the class of prime natural numbers.
Theorem. P is infinite.
Proof. Assume that r is a natural number and p is a sequence of length r
and {p1, . . . , pr} is a subclass of P. [...] !"

4.2 The ForTheL Language

The mathematical controlled language ForTheL has been developed over several
decades in the Evidence Algorithm (EA) / System for Automated Deduction
(SAD) project. It is carefully designed to approximate the weakly typed nat-
ural language of mathematics whilst being efficiently translatable to first-order
logic. In ForTheL, standard mathematical types are called notions, and these
are internally represented as predicates with a distinguished variable, which are
treated as unary predicates with the other variables used as parameters (“types
as predicates”). This leads to a flexible dependent type system where number

The Isabelle/Naproche Natural Language Prooof Assistant 617

systems can be cumulative (N ⊆ R), and notions can depend on parameters
(subsets of N, divisors of n).

First-order languages of notions, constants, relations, and functions can be
introduced and extended by signature and definition commands. The formaliz-
ation of Euclid’s theorem, e.g., sets out like:

Signature. A natural number is a small object.
Let . . .m, n . . . denote natural numbers.
Signature. 0 is a natural number.
· · ·
Signature. m+ n is a natural number.

5 Architecture of the !aproche System

!aproche follows standard principles of interactive theorem proving, but with
a strong emphasis on the naturalness aspects explained above. The general in-
formation processing in the system is described in the following diagram. The
core !aproche program is implemented in Haskell.

In the sequel we shall describe main components of !aproche.

5.1 Tokenizing and Parsing

!aproche uses a standard tokenizing algorithm for cutting text up into a list of
meaningful tokens, with precise source positions to enable PIDE messages and
markup, e.g., by colours for free and bound variables. When using LATEX syntax,
the tokenizer also takes care of expanding certain TEX commands (see the next
subsection).

Parsing is carried out in Haskell’s monadic style with parser combinators.
We allow ambiguous parsing, since it better fits natural language. Currently the
translation into tagged first-order logic is already part of the parsing process. The
following translation of our example snippet was obtained by running !aproche
from the command line with the -T (translate) option:

618 A. De Lon et al.

......
hypothesis.

assume forall v0 ((HeadTerm :: v0 = Primes) implies
(aClass(v0) and forall v1 (aElementOf(v1,v0)
iff (aNaturalNumber(v1) and isPrime(v1))))).

conjecture Euclid.
isInfinite(Primes).
proof.

assume ((aNaturalNumber(r) and aSequenceOfLength(p,r)) and
aSubsetOf(Set{p}{1}{r},Primes)).
n = Prod{p}{1}{r}+1.

......

In order to make !aproche more versatile we plan on parsing into an abstract
syntax tree instead, so that different logical back-ends could translate into dif-
ferent logics. We have already made some experiments on translating ForTheL
to Lean [12].

Moreover, with the input language growing, we shall eventually turn to some
grammatical framework to speed up language development without hard-coding
vocabulary or grammar rules into the !aproche code.

5.2 LATEX Processing

We have extended !aproche to support a .ftl.tex format, in addition to the
original .ftl format. Files in .ftl.tex format are intended to be readable by
both !aproche for logical checking and by LATEX for typesetting.

The LATEX tokenizer ignores the whole document, except what is inside
forthel environments of the form

\begin{forthel}
% Insert what you want Naproche to process here

\end{forthel}

In a forthel environment, standard LATEX syntax can be used for declaring text
environments for theorems and definitions.

In!aproche, users can define their own operators and phrases by defining lin-
guistic and symbolic patterns. This mechanism has been adapted to allow LATEX
constructs in patterns. In the Euclid text we use the pattern \Set{p}{1}{r} for
the finite set {p1, . . . , pr}. By defining \Set as a LATEX macro we can arrange
that the ForTheL pattern will be printed in the familiar set notation:

\newcommand{\Set}[3]{\{#1_{#2},\dots,#1_{#3}\}}

There are some primitive concepts in !aproche, such as the logical operators ∨,
∧, ∃ that are directly recognized in the LATEX source and expanded to corres-
ponding internal tokens.

The Isabelle/Naproche Natural Language Prooof Assistant 619

The current release of !aproche does not differentiate between math mode
and text mode in LATEX, since it re-uses much of the parsing machinery of the
original .ftl format. Future releases shall make such a distinction to increase the
robustness of the parser, improve error messages and resolve some ambiguities
in the current grammar.

5.3 Logical Processing

The first-order formulas derived from ForTheL statements are put into an in-
ternal ProofText data type consisting of blocks of formulae, arranged in a tree-
like fashion. The tree structure mirrors the logical structure of a text, where a
statement can be seen as a node to which a subtext, e.g., its proof is attached.
Since statements in a proof can have their own subproofs this leads to a recurs-
ive tree structure, on which the further checking is performed along a depth-first
left-to-right traversal.

5.4 Ontological Checking by the !aproche Reasoner

An innocent mathematical statement like a2 + b2 = c2 contains a number of
implicit proof tasks, even if the whole statement is not to be proved, but part of
a definition or an assumption. One has to check that a, b, c are (numerical) terms
to which the squaring operation can be applied, and that the resulting squares
can be subjected to addition and equality. These checks are called “ontological”,
and they roughly correspond to type checking in type-orientated systems. The
situation here is however more complicated, as types (i.e. notions) and operations
may involve first-order definitions with preconditions, which cannot be decided
during the parsing process but only during proof-checking. So in the checking
process each node of the aforementioned tree is first checked ontologically ; if the
node formula itself is marked as a conjecture, it is logically checked.

5.5 Logical Checking by the !aproche Reasoner

The various checks are organized by the !aproche reasoner module. In simple
cases the reasoner itself can supply a proof; if not, the reasoner constructs proof
tasks for the ATP. Since definitions in first-order logic are formally symmetric
equivalences, they may lead to circularities in proof searches. Instead definitions
are successively unfolded by replacing the definiendum by the definiens. This
process may be iterated when proof attempts fail.

The ATP is given certain timeouts to search for proofs. Ontological checking
is supposed to be easier than proper mathematical proving. So the default time
for each ontological check is set to 1 sec, whereas proving gets 3 sec and can be
iterated for several rounds of definition unfolding.

620 A. De Lon et al.

5.6 Communication with an External ATP

Proof tasks are translated into the generic TPTP first-order format for ATPs.
These can be viewed in the Output window of Isabelle/jEdit, after inserting the
directive [dump on] into the ForTheL source. The final proof task in checking
Euclid’s proof ends with the TPTP lines:

fof(m_,hypothesis,(! [W0] : (aClass(W0) =>
(isInfinite(W0) <=> (~ isFinite(W0)))))).

fof(m_,hypothesis,(aClass(szPzrzizmzezs) &
(! [W0] : (aElementOf(W0,szPzrzizmzezs)
<=> (aNaturalNumber(W0) & isPrime(W0)))))).

fof(m__,conjecture,
......
(aElementOf(W4,szSzeztlcdtrclcz1rclcdtrc(W0,W1)) <=>
(aNaturalNumber(W4) & isPrime(W4))))))))))))) =>
isInfinite(szPzrzizmzezs))).

By default !aproche uses E prover [19] as external ATP, but one may switch to
other provers available in the Isabelle distribution.

6 Integration into Isabelle

The initial integration of !aproche into the Isabelle Prover IDE happened in
2018 and is briefly reported as an example in the PIDE overview article [23]
based on Isabelle2019 (June 2019). The main idea was to turn the existing
Haskell command-line program into a TCP server that can answer concurrent
requests for checking ForTheL texts in a purely functional manner, with proper
handling of cancel messages (for interrupts caused by user editing); this required
to remove a few low-level system operations, like reading physical files or exit
of the process. Afterwards, the semantic operation forthel_file in Isabelle –
to check ForTheL text and produce markup messages according to the PIDE
protocol – was implemented as Isabelle/Isar command in Isabelle/ML as usual,
but the main work is delegated to the !aproche server. Its implementation uses
the Isabelle/Haskell library for common Isabelle/PIDE message formats, source
positions, markup etc. – it is maintained within the Isabelle distribution.

The current version of Isabelle/Naproche refines this approach in various
respects. In particular, Isabelle2021 now provides a standard mechanism for
user-defined Isabelle/Scala services : this is both relevant for Isabelle command-
line tools to build and test Isabelle/Naproche, and the Prover IDE support of
ForTheL files to connect the Isabelle/jEdit front-end to the !aproche back-end.

Moreover, the Java process running the Prover IDE provides an additional
TCP server to launch external provers that are already distributed with Isabelle
(thanks to Isabelle/Sledgehammer): !aproche applications mainly use the cur-
rent E prover 2.5 [19], but SPASS and Vampire are available for experiments.

The Isabelle/Naproche Natural Language Prooof Assistant 621

The existing management of processes in Isabelle/Scala involves considerable ef-
forts to robustly support interrupts and timeouts in a concurrent environment;
this works on all platforms supported by Isabelle (using special tricks for Win-
dows/Cygwin, and macOS/Rosetta on Apple Silicon).

The documentation file $ISABELLE_NAPROCHE/Intro.thy gives further hints
on implementation near the end, with hyperlinks to the sources. A lot of technical
Isabelle infrastructure is re-used by Isabelle/Naproche, but there is presently no
connection to Isabelle/HOL, which is a much larger and better-known applica-
tion of the same Isabelle framework [18].

7 Related and Future Work

Bridging the gap between mathematical practice and fully formal methods has
always been a central concern in formal mathematics. The development of the
Mizar system [11] was accompanied or even driven by the stepwise adaptation of
its language to standard mathematical proof methods and logical foundations.
In contrast, most interactive theorem provers feature formal tactic languages,
with tactics scripts that can hardly be understood without stepwise tracing and
reconstructing internal logical states.

The Mizar language has been a role model for other proof languages. There
are, e.g., "Mizar modes" for HOL [6,25] and Coq [4] and the widely used Isar
language for Isabelle [24,22]. These language can be read by mathematicians,
with some effort, but they retain a strong bias toward computer science customs.
A survey of input languages for formalization on a scale between formal and
natural can be found in [9].

Only a few formal mathematics projects have aimed at processing actual
mathematical language. These projects have operated in isolation and seem to
be mostly inactive now. The paper [7] by Muhammad Humayoun and Christophe
Raffalli, e.g., describes the MathNat project and also surveys other related at-
tempts.

The Naproche approach can be viewed in the Mizar tradition: use a rich
controlled language for mathematics, increase the proving capabilities by strong
automated theorem proving, and, eventually, create an extensive library of basic
mathematics and specialized theories, which simultaneously can be used as a
library for human readers.

The readability and naturalness of texts which proof-check in the !aproche
system motivate significant further extensions of the project where ad hoc meth-
ods are to be replaced by principled and established approaches:

1. the input language ForTheL has to be extended for wide mathematical
coverage; ForTheL needs an extensive formal grammar and vocabulary to be
processed by strong linguistic methods; the vocabulary may also encompass
standard LATEX symbols and semantic information;

2. methods of type derivation and elaboration should be provided;
3. Isabelle/Sledgehammer-like methods should lead to efficient premise selec-

tion in large texts and theories;

622 A. De Lon et al.

4. the creation of libraries of ForTheL documents requires import and ex-
port mechanisms corresponding to quoting and referencing in the mathematical
literature;

5. the natural text processing of !aproche should be interfaced with other
proof assistants to leverage their strengths and libraries. We shall in particular
work on a “!aproche mode” for Isabelle.

References

1. Cramer, M.: Proof-checking mathematical texts in controlled natural language.
Ph.D. thesis, University of Bonn (2013), http://hdl.handle.net/20.500.11811/5780

2. Cramer, M., Koepke, P., Kühlwein, D., Schröder, B.: The Naproche system (2009),
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.211.3401

3. Frerix, S., Koepke, P.: Automatic proof-checking of ordinary mathematical texts.
Proceedings of the Workshop Formal Mathematics for Mathematicians (2018),
http://ceur-ws.org/Vol-2307/paper13.pdf

4. Giero, M., Wiedijk, F.: MMode, a Mizar mode for the proof assistant Coq (2003),
https://www.cs.ru.nl/~freek/mmode/mmode.pdf

5. Hales, T.: Formal abstracts (2020), https://formalabstracts.github.io
6. Harrison, J.: A Mizar mode for HOL. In: von Wright, J., Grundy, J., Harrison,

J. (eds.) Theorem Proving in Higher Order Logics: 9th International Conference,
TPHOLs’96. Lecture Notes in Computer Science, vol. 1125, pp. 203–220. Springer-
Verlag, Turku, Finland (1996)

7. Humayoun, M., Raffalli, C.: MathNat - mathematical text in a controlled natural
language. Journal on Research in Computing Science 46 (2010)

8. Isabelle contributors: The Isabelle2021 release (2021), https://isabelle.in.tum.de
9. Kaliszyk, C., Rabe, F.: A survey of languages for formalizing mathematics. In:

Benzmüller, C., Miller, B. (eds.) Intelligent Computer Mathematics. pp. 138–156.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-53518-6_9

10. Koepke, P.: Textbook mathematics in the Naproche-SAD system. In: Brady, E.,
Davenport, J., Farmer, W.M., Kaliszyk, C., Kohlhase, A., Kohlhase, M., Müller,
D., Pąk, K., Coen, C.S. (eds.) Joint Proceedings of the FMM and LML Workshops
(2019), http://ceur-ws.org/Vol-2634/FMM4.pdf

11. Mizar, http://www.mizar.org/
12. de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The

Lean Theorem Prover (system description). In: Felty, A.P., Middeldorp, A.
(eds.) Automated Deduction – CADE-25 – 25th International Conference on
Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. Lec-
ture Notes in Computer Science, vol. 9195, pp. 378–388. Springer (2015).
https://doi.org/10.1007/978-3-319-21401-6_26

13. Naproche contributors: FLib, https://github.com/naproche-community/FLib
14. Paskevich, A.: Méthodes de formalisation des connaissances et des raisonnements

mathématiques: aspects appliqués et théoriques. Ph.D. thesis, Université Paris 12
(2007), http://tertium.org/papers/thesis-07.fr.pdf

15. Paskevich, A.: The syntax and semantics of the ForTheL language (2007), http:
//nevidal.org/download/forthel.pdf

16. Paulson, L.C.: ALEXANDRIA: Large-scale formal proof for the working mathem-
atician, https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria

The Isabelle/Naproche Natural Language Prooof Assistant 623

http://hdl.handle.net/20.500.11811/5780
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.211.3401
http://ceur-ws.org/Vol-2307/paper13.pdf
https://www.cs.ru.nl/~freek/mmode/mmode.pdf
https://formalabstracts.github.io
https://isabelle.in.tum.de
https://doi.org/10.1007/978-3-030-53518-6_9
https://doi.org/10.1007/978-3-030-53518-6_9
http://ceur-ws.org/Vol-2634/FMM4.pdf
http://www.mizar.org/
https://doi.org/10.1007/978-3-319-21401-6_26
https://github.com/naproche-community/FLib
http://tertium.org/papers/thesis-07.fr.pdf
http://nevidal.org/download/forthel.pdf
http://nevidal.org/download/forthel.pdf
https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria

17. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Schulz, S., Ternovska, E. (eds.) IWIL 2010. The 8th International Workshop on the
Implementation of Logics. EPiC Series in Computing, vol. 2, pp. 1–11. EasyChair
(2012). https://doi.org/10.29007/36dt

18. Paulson, L.C., Nipkow, T., Wenzel, M.: From LCF to Isabelle/HOL. Formal
Aspects of Computing 31, 675–698 (September 2019), https://doi.org/10.1007/
s00165-019-00492-1, Springer, London

19. Schulz, S.: The E Theorem Prover, https://eprover.org
20. Verchinine, K., Lyaletski, A., Paskevich, A.: System for automated deduction

(SAD): a tool for proof verification. Automated Deduction–CADE-21 pp. 398–403
(2007). https://doi.org/10.1007/978-3-540-73595-3_29

21. Verchinine, K., Lyaletski, A., Paskevich, A., Anisimov, A.: On correctness of
mathematical texts from a logical and practical point of view. In: Autexier, S.,
Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) International
Conference on Intelligent Computer Mathematics. pp. 583–598. Springer (2008).
https://doi.org/10.1007/978-3-540-85110-3_47

22. Wenzel, M.: The Isar proof language in 2016 (2016), http://sketis.net/wp-content/
uploads/2016/08/Isabelle_Workshop_2016_Isar.pdf

23. Wenzel, M.: Interaction with formal mathematical documents in Isabelle/PIDE.
In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.) Intelligent
Computer Mathematics (CICM 2019). Lecture Notes in Artificial Intelligence, vol.
11617. Springer (2019). https://doi.org/10.1007/978-3-030-23250-4_1

24. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof
documents. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.)
Theorem Proving in Higher Order Logics. pp. 167–183. Springer Berlin Heidelberg,
Berlin, Heidelberg (1999)

25. Wiedijk, F.: Mizar light for HOL light. In: Boulton, R.J., Jackson, P.B. (eds.)
TPHOLs: International Conference on Theorem Proving in Higher Order Logics.
pp. 378–393. Springer (2001)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

624 A. De Lon et al.

https://doi.org/10.29007/36dt
https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1007/s00165-019-00492-1
https://eprover.org
https://doi.org/10.1007/978-3-540-73595-3_29
https://doi.org/10.1007/978-3-540-85110-3_47
http://sketis.net/wp-content/uploads/2016/08/Isabelle_Workshop_2016_Isar.pdf
http://sketis.net/wp-content/uploads/2016/08/Isabelle_Workshop_2016_Isar.pdf
https://doi.org/10.1007/978-3-030-23250-4_1
http://creativecommons.org/licenses/by/4.0/

	Preface
	Organization
	Contents
	Invited Talks
	Non-well-founded Deduction for Induction and Coinduction
	1 Introduction
	2 The Principles of Induction and Coinduction
	2.1 Algebraic Formalization of Induction and Coinduction
	2.2 Transitive (Co)closure Operators

	3 Non-well-founded Deduction for Induction
	3.1 Non-well-founded Proof Theory
	3.2 Explicit vs. Implicit Induction in Transitive Closure Logic

	4 Adding Coinductive Reasoning
	4.1 Implicit Coinduction in Transitive (Co)closure Logic
	4.2 Applications in Automated Proof Search
	4.2.1 Program Equivalence in the TcC Framework

	5 Perspectives and Open Questions
	5.1 Implementing Non-well-founded Machinery
	5.2 Relative Power of Explicit and Implicit Reasoning

	References

	Towards the Automatic Mathematician
	1 Introduction
	2 Towards the Automatic Mathematician
	2.1 Neural Network Architectures
	2.2 Training Methodology
	2.3 Instant Utilization of New Premises
	2.4 Natural Language

	3 Conclusion
	References

	Logical Foundations
	Tableau-based Decision Procedure for Non-Fregean Logic of Sentential Identity
	1 Introduction
	2 SCI
	3 Tableaux
	3.1 Tableau System for SCI
	3.2 Soundness and Completeness4
	3.3 Termination
	3.4 Limiting the Number of Labels

	4 Implementation
	4.1 Overview
	4.2 Technical Notes
	4.3 Test Results

	5 Conclusions
	References

	Learning from Łukasiewicz and Meredith: Investigations into Proof Structures
	1 Introduction
	2 Relating Formal Human Proofs with ATP Proofs
	3 Condensed Detachment and a Formal Basis
	3.1 Proof Structures: D-Terms, Tree Size and Compacted Size
	3.2 Proof Structures, Formula Substitutions and Semantics

	4 Reducing the Proof Size by Replacing Subproofs
	5 Properties of Meredith’s Refined Proof
	6 First Experiments
	7 Conclusion
	References

	Efficient Local Reductions to Basic Modal Logic
	1 Introduction
	2 Preliminaries
	3 Layered Normal Form with Sets of Levels
	4 Correctness
	5 Comparison With Related Work
	6 Evaluation
	7 Conclusion and Future Work
	References

	Isabelle's Metalogic: Formalization and Proof Checker
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Types and Terms
	5 Classes and Sorts
	6 Signatures
	7 Logic
	7.1 Basic Inference Rules
	7.2 Equality
	7.3 Type Class Reasoning

	8 Proof Terms and Checker
	9 Size and Structure of the Formalization
	10 Integration with Isabelle
	11 Running the Proof Checker
	12 Trust Assumptions
	13 Future Work
	A Appendix
	References

	Theory and Principles
	 The ksmt Calculus Is a δ-complete Decision Procedure for Non-linear Constraints
	1 Introduction
	2 Preliminaries
	3 The ksmt Calculus
	3.1 Sufficient Termination Conditions

	4 δ-decidability
	5 δ-ksmt
	5.1 Soundness
	5.2 δ-completeness

	6 Local ε-full Linearisations
	7 Conclusion
	References

	Universal Invariant Checking of Parametric Systems with Quantifier-free SMT Reasoning
	1 Introduction
	2 Preliminaries
	3 Modeling Parametric Systems as Array-based Transition Systems
	3.1 Universal invariant problem for array-based systems

	4 Overview of the Method
	5 Modified Parameter Abstraction
	5.1 Abstraction Computation
	5.2 Stuttering Simulation

	6 Refinement
	6.1 From Invariants to Universal Lemmas

	7 Related Work
	8 Experimental Evaluation
	9 Conclusions
	References

	Politeness and Stable Infiniteness: Stronger Together
	1 Introduction
	2 Preliminaries
	2.1 Signatures and Structures
	2.2 Polite Theories

	3 Politeness and Strong Politeness
	3.1 Witnesses vs. Strong Witnesses
	3.2 A Polite Theory that is not Strongly Polite
	3.3 The Case of Mono-sorted Polite Theories
	3.4 Mono-sorted Finite Witnessability

	4 A Blend of Polite and Stably-Infinite Theories
	4.1 Refined Combination Theorem
	4.2 Proof of Theorem 4

	5 Preliminary Case Study
	6 Conclusion
	References

	Equational Theorem Proving Modulo
	1 Introduction
	2 Preliminaries
	3 Constrained Clauses
	4 Inference Rules
	5 Redundancy Criteria and Contraction Techniques
	6 Refutational Completeness
	7 Conclusion
	References

	Unifying Decidable Entailments in Separation Logic with Inductive Definitions
	1 Introduction
	2 Definitions
	3 Decidable Entailment Problems
	4 Reducing Safe to Established Entailments
	4.1 Expansions and Truncations
	4.2 Transforming the Consequent
	4.3 Transforming the Antecedent
	4.4 Transforming Entailments

	5 Conclusion and Future Work
	References

	Subformula Linking for Intuitionistic Logic with Application to Type Theory
	1 Introduction
	2 Subformula Linking for Intuitionistic First-Order Logic
	2.1 The Propositional Fragment
	2.2 Quantifiers

	3 Incorporating Arity-Typed λ-Terms
	4 Application: Embedding Intuitionistic Type Theories
	5 Conclusion and Future Directions
	References

	Efficient SAT-based Proof Search in Intuitionistic Propositional Logic
	1 Introduction
	2 Preliminary Notions
	3 The Calculus C→
	4 The Procedure proveR
	5 Related Work and Experimental Results
	References

	Proof Search and Certificates for Evidential Transactions
	1 Introduction
	2 Cyberlogic Proof Theory
	3 Cyberlogic Programs
	3.1 Cyberlogic Program Syntax
	3.2 CPS Proof Search

	4 Proof Certificates
	5 Related Work
	6 Conclusions
	References

	Non-clausal Redundancy Properties
	1 Introduction
	2 Preliminaries
	3 Redundancy for Boolean Functions
	4 BDD Redundancy Properties
	5 Gaussian Elimination
	6 Results
	7 Conclusion
	References

	Multi-Dimensional Interpretations for Termination of Term Rewriting
	1 Introduction
	2 Preliminaries
	3 Notes on Reduction Pairs
	4 Interpretation Methods as Derivers
	5 Multi-Dimensional Interpretations
	6 Arctic Interpretations
	7 Strict Monotonicity
	8 Implementation and Experiments
	9 Conclusion
	References

	Finding Good Proofs for Description Logic Entailments using Recursive Quality Measures
	1 Introduction
	2 Preliminaries
	2.1 Proofs
	2.2 Derivers

	3 Measuring Proofs
	3.1 Monotone Recursive Measures

	4 Complexity Results
	4.1 The General Case
	4.2 Proof Depth
	4.3 The Tree Size Measure

	5 Conclusion
	References

	Computing Optimal Repairs of Quantified ABoxes w.r.t. Static EL TBoxes
	1 Introduction
	2 Preliminaries
	3 A Tale of Two Entailments
	3.1 Classical Entailment and CQ-Entailment
	3.2 IQ-Entailment

	4 Canonical Repairs
	5 Optimized Repairs
	6 Evaluation
	7 Conclusion
	References

	Generalized Completeness for SOS Resolution and its Application to a New Notion of Relevance
	1 Introduction
	2 Resolution Proof Transformation
	3 A Generalized Completeness Proof for SOS
	4 A new Notion of Relevance
	5 Conclusion
	References

	A Unifying Splitting Framework
	1 Introduction
	2 Preliminaries
	3 Splitting Calculi
	4 Model-Guided Provers
	5 Locking Provers
	6 AVATAR-Based Provers
	7 Application to Other Architectures
	8 Conclusion

	Integer Induction in Saturation
	1 Introduction
	2 Motivating Examples
	2.1 Preliminaries
	2.2 Examples

	3 Integer Induction
	4 Integer Induction in Saturation-Based Proof Search
	5 Implementation and Experiments
	5.1 Implementation
	5.2 Benchmarks
	5.3 Experimental Setup
	5.4 Experimental Results

	6 Related Work
	7 Conclusions
	References

	Superposition with First-class Booleans and Inprocessing Clausification
	1 Introduction
	2 Logic
	3 The Calculus
	4 Refutational Completeness
	5 Inprocessing Clausification Methods
	6 Implementation
	7 Evaluation
	8 Related Work and Conclusion
	Acknowledgment
	References

	Superposition for Full Higher-order Logic
	1 Introduction
	2 Logic
	3 The Calculus
	4 Refutational Completeness
	5 Implementation
	6 Evaluation
	7 Conclusion
	Acknowledgment
	References

	Implementation and Application
	Making Higher-Order Superposition Work
	1 Introduction
	2 Background and Setting
	3 Preprocessing Higher-Order Problems
	4 Reasoning about Formulas
	5 Enumerating Infinitely Branching Inferences
	6 Controlling Prolific Rules
	7 Controlling the Use of Backends
	8 Comparison with Other Provers
	9 Discussion and Conclusion
	References

	Dual Proof Generation for Quantified Boolean Formulas with a BDD-based Solver
	1 Introduction
	2 Background Preliminaries
	3 Logical Foundations
	3.1 Inference Rules
	3.2 Integrating Proof Generation into BDD Operations

	4 Integrating Proof Generation into a QBF Solver
	4.1 Dual Proof Generation
	4.2 Clause Removal
	4.3 Specializing to Refutation or Satisfaction Proofs

	5 Experimental Results
	6 Conclusions
	Acknowledgements.
	References

	Reliable Reconstruction of Fine-grained Proofs in a Proof Assistant
	1 Introduction
	2 veriT and Proofs
	3 Overview of the veriT-Powered smt Tactic
	4 Tuning the Reconstruction
	4.1 Preprocessing Rules
	4.2 Implicit Steps
	4.3 Arithmetic Reasoning
	4.4 Selective Decoding of the First-order Encoding
	4.5 Skipping Steps

	5 Evaluation
	5.1 Strategies
	5.2 Improvements of Sledgehammer Results
	5.3 Speed of Reconstruction

	6 Related Work
	7 Conclusion
	References

	An Automated Approach to the Collatz Conjecture
	1 Introduction
	2 Preliminaries
	2.1 String Rewriting Systems
	2.2 Interpretation Method
	2.3 Generalized Collatz Functions

	3 Rewriting the Collatz Function
	3.1 Rewriting in Unary
	3.2 Rewriting in Mixed Base

	4 Automated Proofs
	4.1 Convergence of W
	4.2 Farkas’ Variant
	4.3 Subsets of T
	4.4 Odd Trajectories
	4.5 Collatz Trajectories Modulo 8

	5 More Problems to Approach via Rewriting
	6 Related Work
	7 Future Work
	References

	Verified Interactive Computation of Definite Integrals
	1 Introduction
	2 Overall Architecture
	3 Integration Rules
	3.1 Simplification
	3.2 Trigonometric Identities
	3.3 Substitution
	3.4 Integration by Parts
	3.5 Rewriting
	3.6 Splitting an Integral
	3.7 Solving Equations

	4 User Interface
	4.1 Substitution
	4.2 Rational Functions
	4.3 Trigonometric Identities
	4.4 Slagle's Method

	5 Proof Translation
	5.1 Introduction to HolPy
	5.2 Background Library
	5.3 Structure of Proof Automation
	5.4 Inequality Checking
	5.5 Simplification
	5.6 Applying Theorems

	6 Evaluation and Examples
	7 Conclusion
	References

	ATP and AI
	Confidences for Commonsense Reasoning
	1 Introduction
	2 Interpretation and Encoding of Uncertainty
	2.1 Sources, Representation and Meaning of Statements, Confidences and Dependencies

	3 The CONFER Extension Framework for CSR
	3.1 Resolution Method
	3.2 Queries and Answers
	3.3 Top Level of the Algorithm
	3.4 C-Resolution
	3.5 Cumulative Con dence
	3.6 Negative Evidence

	4 Implementation and Experimental Results
	4.1 Comparing Con dences
	4.2 Performance

	5 Summary and Future Work
	References

	Neural Precedence Recommender
	1 Introduction
	2 Preliminaries
	2.1 Saturation-Based Theorem Proving
	2.2 Superposition Calculus
	2.3 Neural Networks

	3 Architecture
	3.1 Graph Constructor: From CNF to Graphs
	3.2 GCN: From Graphs to Symbol Embeddings
	3.3 Output Layer: From Symbol Embeddings to Symbol Costs
	3.4 Sort: From Symbol Costs to Precedence

	4 Training Procedure
	4.1 Precedence Cost
	4.2 Learning to Rank Precedences

	5 Experimental Evaluation
	5.1 Environment
	5.2 Dataset Preparation
	5.3 Hyperparameters
	5.4 Training Procedure
	5.5 Final Evaluation
	5.6 Results

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

	Improving ENIGMA-style Clause Selection while Learning From History
	1 Introduction
	2 ATPs, Clause Selection, and Machine Learning
	2.1 Traditional Approaches to Clause Selection
	2.2 ENIGMA-style Machine-Learned Clause Selection Guidance
	2.3 Integrating the Learned Advice

	3 Layered Clause Selection and Lazy Model Evaluation
	3.1 Lazy Model Evaluation

	4 A Neural Classification of Clause Derivations
	4.1 Recursive Neural Networks
	4.2 Architecture Details
	4.3 Training the Network
	4.4 An Abstraction for Compression and Caching

	5 Experiments
	5.1 Data Preparation
	5.2 Training
	5.3 Advice Integration
	5.4 Evaluation Speed, Lazy Evaluation, and Abstraction Caching
	5.5 Positive Bias
	5.6 Learning from Guided Proofs and Negative Mining

	6 Conclusion
	Acknowledgement
	References

	System Descriptions
	A Normative Supervisor for Reinforcement Learning Agents
	1 Introduction
	2 Background
	3 The Normative Supervisor
	3.1 Configuring the Norm Base
	3.2 Automating Translation
	3.3 Classify and Assess Conclusions
	3.4 Revising the Norm Base

	4 Evaluation and Conclusion
	References

	Automatically Building Diagrams for Olympiad Geometry Problems
	1 Introduction
	2 Background
	2.1 Olympiad-Level Geometry Problem Statements
	2.2 Challenge: Globally Coupled Constraints
	2.3 Challenge: Root Resolution

	3 Methods
	3.1 GMBL: Overview
	3.2 GMBL: Commands
	3.3 GMBL: Functions and Predicates
	3.4 Auxiliary Losses
	3.5 Implementation

	4 Results
	5 Future Work
	6 Related Work
	7 Conclusion
	References

	The Fusemate Logic Programming System
	1 Introduction
	2 Fusemate Programs
	3 Model Computation
	4 Shallow Embedding in Scala
	5 Embedding Description Logic ALCIF
	6 Conclusions
	References

	Twee: An Equational Theorem Prover
	1 Introduction
	2 Architecture
	3 Redundancy Criteria
	3.1 Ground Joinability Testing
	3.2 Connectedness

	4 Implementation
	4.1 Terms
	4.2 Indexing
	4.3 The Passive Set

	5 Evaluation
	6 Future Work
	7 Conclusion
	References

	The Isabelle/Naproche Natural Language Proof Assistant
	1 Introduction
	2 Natural Proof Assistants
	3 Isabelle/Naproche
	4 Formalizing in ForTheL
	4.1 Example
	4.2 The ForTheL Language

	5 Architecture of the Naproche System
	5.1 Tokenizing and Parsing
	5.2 LATEX Processing
	5.3 Logical Processing
	5.4 Ontological Checking by the •aproche Reasoner
	5.5 Logical Checking by the •aproche Reasoner
	5.6 Communication with an External ATP

	6 Integration into Isabelle
	7 Related and Future Work
	References

	The Lean 4 Theorem Prover and Programming Language
	1 Introduction
	2 Lean by Example
	3 The Code Generator
	4 The User Interface
	5 Conclusion
	References

	Harpoon: Mechanizing Metatheory Interactively
	1 Introduction
	2 Proof Development in Harpoon
	2.1 Initial setup: encoding the language
	2.2 Termination Property: intros, split, unbox, and solve
	2.3 Setup continued: reducibility
	2.4 Backwards Closed Property: msplit, suffices, and by

	3 Implementation of Harpoon
	4 Empirical evaluation of Harpoon
	5 Related work
	6 Conclusion
	References

	Author Index

