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1 Sets
Abbreviation 1. A ∋ a iff a ∈ A.

1.1 Extensionality
The axiom of set extensionality says that sets are determined by their extension, that
is, two sets are equal iff they have the same elements.
Axiom 2. (Set extensionality) Suppose for all a we have a ∈ A iff a ∈ B. Then
A = B.

This axiom is also available as the justification “… by set extensionality”, which applies
it to goals of the form “A = B” and “A ̸= B”.
Proposition 3. (Witness for disequality) Suppose A ̸= B. Then there exists c
such that either c ∈ A and c ̸∈ B or c ̸∈ A and c ∈ B.

Proof. Suppose not. Then A = B by set extensionality. Contradiction.

1.2 Subsets
Definition 4. A ⊆ B iff for all a ∈ A we have a ∈ B.
Abbreviation 5. A is a subset of B iff A ⊆ B.
Abbreviation 6. B ⊇ A iff A ⊆ B.
Proposition 7. A ⊆ A.
Proposition 8. Suppose A ⊆ B ⊆ A. Then A = B.

Proof. Follows by set extensionality.

Proposition 9. Suppose a ∈ A ⊆ B. Then a ∈ B.
Proposition 10. Suppose A ⊆ B and c /∈ B. Then c /∈ A.
Proposition 11. Suppose A ⊆ B ⊆ C. Then A ⊆ C.
Definition 12. A ⊂ B iff A ⊆ B and A ̸= B.
Proposition 13. A ̸⊂ A.
Proposition 14. Suppose A ⊆ B ⊆ C. Then A ⊆ C.
Proposition 15. Suppose A ⊂ B. Then there exists b ∈ B such that b /∈ A.

Proof. A ⊆ B and A ̸= B.

Abbreviation 16. F is a family of subsets of X iff for all A ∈ F we have A ⊆ X.
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1.3 The empty set
Axiom 17. For all a we have a /∈ ∅.
Definition 18. A is inhabited iff there exists a such that a ∈ A.
Abbreviation 19. A is empty iff A is not inhabited.
Proposition 20. If x and y are empty, then x = y.
Proposition 21. For all a we have ∅ ⊆ a.
Proposition 22. A ⊆ ∅ iff A = ∅.

1.4 Disjointness of sets
Definition 23. A is disjoint from B iff there exists no a such that a ∈ A,B.
Abbreviation 24. A ̸⊃⊂ B iff A is disjoint from B.
Abbreviation 25. A ⊃⊂ B iff A is not disjoint from B.
Proposition 26. If A is disjoint from B, then B is disjoint from A.

1.5 Unordered pairing and set adjunction
Finite set expressions are desugared to iterated application of cons to ∅. Thus {x, y, z} is
an abbreviaton of cons(x, cons(y, cons(z, ∅))). The cons operation is determined by the
following axiom:
Axiom 27. x ∈ cons(y,X) iff x = y or x ∈ X.
Proposition 28. x ∈ cons(x,X).
Proposition 29. If y ∈ X, then y ∈ cons(x,X).
Proposition 30. a ∈ {a, b}.
Proposition 31. b ∈ {a, b}.
Proposition 32. Suppose c ∈ {a, b}. Then a = c or b = c.
Proposition 33. c ∈ {a, b} iff a = c or b = c.
Proposition 34. a ∈ {a}.
Proposition 35. If a ∈ {b}, then a = b.
Proposition 36. a ∈ {b} iff a = b.
Abbreviation 37. A is a subsingleton iff for all a, b ∈ A we have a = b.
Proposition 38. {a} is inhabited.
Proposition 39. Let A be a subsingleton. Let a ∈ A. Then A = {a}.

Proof. Follows by set extensionality.

Proposition 40. Suppose a ∈ C. Then {a} ⊆ C.
Proposition 41. Suppose {a} ⊆ C. Then a ∈ C.
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1.6 Union and intersection
1.6.1 Union of a set

Axiom 42. z ∈
⋃
X iff there exists Y ∈ X such that z ∈ Y .

Proposition 43. Suppose A ∈ B ∈ C. Then A ∈
⋃
C.

Proof. There exists B ∈ C such that A ∈ B.

Proposition 44.
⋃
∅ = ∅.

Proposition 45. Let F be a family of subsets of X. Then
⋃
F ⊆ X.

Abbreviation 46. T is closed under arbitrary unions iff for every subset M of T we
have

⋃
M ∈ T .

1.6.2 Intersection of a set

Definition 47.
⋂
A = {x ∈

⋃
A | for all a ∈ A we have x ∈ a}.

Proposition 48. z ∈
⋂
X iff X is inhabited and for all Y ∈ X we have z ∈ Y .

Proposition 49. Suppose C is inhabited. Suppose for all B ∈ C we have A ∈ B.
Then A ∈

⋂
C.

Proposition 50. Suppose A ∈
⋂
C. Suppose B ∈ C. Then A ∈ B.

Proposition 51. Suppose A is inhabited. Suppose for all a ∈ A we have C ⊆ a. Then
C ⊆

⋂
A.

Proposition 52. Suppose A is inhabited. Then C ⊆
⋂
A iff for all a ∈ A we have

C ⊆ a.
Proposition 53. Let B ∈ A. Then

⋂
A ⊆ B.

Proposition 54.
⋂
{a} = a.

Proof. Every element of a is an element of
⋂
{a} by propositions [36], [38] and [48].

Follows by set extensionality.

Proposition 55.
⋂
{∅} = ∅.

Proof. Follows by set extensionality.

1.6.3 Binary union

Axiom 56. Let A,B be sets. a ∈ A ∪B iff a ∈ A or a ∈ B.
Proposition 57. If c ∈ A, then c ∈ A ∪B.
Proposition 58. If c ∈ B, then c ∈ A ∪B.
Proposition 59.

⋃
{x, y} = x ∪ y.

Proof. Follows by set extensionality.
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Proposition 60. (Commutativity of union) A ∪B = B ∪A.

Proof. Follows by set extensionality.

Proposition 61. (Associativity of union) (A ∪B) ∪ C = A ∪ (B ∪ C).

Proof. Follows by set extensionality.

Proposition 62. (Idempotence of union) A ∪A = A.

Proof. Follows by set extensionality.

Proposition 63. A ∪B ⊆ C iff A ⊆ C and B ⊆ C.
Proposition 64. A ⊆ A ∪B.
Proposition 65. B ⊆ A ∪B.
Proposition 66. Suppose A ⊆ C and B ⊆ D. Then A ∪B ⊆ C ∪D.
Proposition 67. A ∪ ∅ = A.

Proof. Follows by set extensionality.

Proposition 68. Suppose A = ∅ and B = ∅. Then A ∪B = ∅.

Proof. Follows by set extensionality.

Proposition 69. Suppose A ∪B = ∅. Then A = ∅.

Proof. Follows by set extensionality.

Proposition 70. Suppose A ∪B = ∅. Then B = ∅.

Proof. Follows by set extensionality.

Proposition 71. Suppose A ⊆ B. Then A ∪B = B.

Proof. Follows by set extensionality.

Proposition 72. Suppose A ⊆ B. Then B ∪A = B.

Proof. Follows by set extensionality.

Proposition 73. If A ∪B = B, then A ⊆ B.
Proposition 74.

⋃
cons(b, A) = b ∪

⋃
A.

Proof. Follows by set extensionality.

Proposition 75. cons(b, A) ∪ C = cons(b, A ∪ C).

Proof. Follows by set extensionality.

Proposition 76. A ∪ (A ∪B) = A ∪B.
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Proof. Follows by set extensionality.

Proposition 77. (A ∪B) ∪B = A ∪B.

Proof. Follows by set extensionality.

Proposition 78. A ∪ (B ∪ C) = B ∪ (A ∪ C).

Proof. Follows by set extensionality.

Abbreviation 79. T is closed under binary unions iff for every U, V ∈ T we have
U ∪ V ∈ T .

1.6.4 Binary intersection

Definition 80. A ∩B = {a ∈ A | a ∈ B}.
Proposition 81. If c ∈ A,B, then c ∈ A ∩B.
Proposition 82. If c ∈ A ∩B, then c ∈ A.
Proposition 83. If c ∈ A ∩B, then c ∈ B.
Proposition 84.

⋂
{A,B} = A ∩B.

Proof. {A,B} is inhabited. Thus for all c we have c ∈
⋂
{A,B} iff c ∈ A ∩ B by

propositions [33] and [48] and definition [80]. Follows by extensionality.

Proposition 85. (Commutativity of intersection) A ∩B = B ∩A.

Proof. Follows by set extensionality.

Proposition 86. (Associativity of intersection) (A ∩B) ∩ C = A ∩ (B ∩ C).

Proof. Follows by set extensionality.

Proposition 87. (Idempotence of intersection) A ∩A = A.

Proof. Follows by set extensionality.

Proposition 88. A ∩B ⊆ A.
Proposition 89. A ∩ ∅ = ∅.

Proof. Follows by set extensionality.

Proposition 90. Suppose A ⊆ B. Then A ∩B = A.

Proof. Follows by set extensionality.

Proposition 91. Suppose A ⊆ B. Then B ∩A = A.

Proof. Follows by set extensionality.
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Proposition 92. Suppose A ∩B = A. Then A ⊆ B.
Proposition 93. C ⊆ A ∩B iff C ⊆ A and C ⊆ B.
Proposition 94. A ∩B ⊆ A.
Proposition 95. A ∩B ⊆ B.
Proposition 96. A ∩ (A ∩B) = A ∩B.

Proof. Follows by set extensionality.

Proposition 97. (A ∩B) ∩B = A ∩B.

Proof. Follows by set extensionality.

Proposition 98. A ∩ (B ∩ C) = B ∩ (A ∩ C).

Proof. Follows by set extensionality.

Abbreviation 99. T is closed under binary intersections iff for every U, V ∈ T we
have U ∩ V ∈ T .

1.6.5 Interaction of union and intersection

Proposition 100. (Binary intersection over binary union) x ∩ (y ∪ z) =
(x ∩ y) ∪ (x ∩ z).

Proof. Follows by set extensionality.

Proposition 101. (Binary union over binary intersection) x ∪ (y ∩ z) =
(x ∪ y) ∩ (x ∪ z).

Proof. Follows by set extensionality.

Proposition 102. Suppose C ⊆ A. Then (A ∩B) ∪ C = A ∩ (B ∪ C).

Proof. Follows by set extensionality.

Proposition 103. Suppose (A ∩B) ∪ C = A ∩ (B ∪ C). Then C ⊆ A.
Proposition 104. (A ∩B) ∪ (B ∩ C) ∪ (C ∩A) = (A ∪B) ∩ (B ∪ C) ∩ (C ∪A).

Proof. Follows by set extensionality.

Proposition 105. (Intersection over binary union) Suppose A and B are
inhabited. Then

⋂
A ∪B = (

⋂
A) ∩

⋂
B.

Proof. A ∪ B is inhabited. Thus for all c we have c ∈
⋂
A ∪ B iff c ∈ (

⋂
A) ∩

⋂
B by

definition [80], axiom [56], and proposition [48]. Follows by set extensionality.
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1.7 Set difference
Definition 106. A \B = {a ∈ A | a ̸∈ B}.
Proposition 107. If a ∈ A and a /∈ B, then a ∈ A \B.
Proposition 108. If a ∈ A \B, then a ∈ A.
Proposition 109. If a ∈ A \B, then a /∈ B.
Proposition 110. x \ ∅ = x.

Proof. Follows by set extensionality.

Proposition 111. ∅ \ x = ∅.

Proof. Follows by set extensionality.

Proposition 112. x \ x = ∅.

Proof. Follows by set extensionality.

Proposition 113. x \ (x \ y) = x ∩ y.

Proof. Follows by set extensionality.

Proposition 114. Suppose y ⊆ x. x \ (x \ y) = y.

Proof. Follows by propositions [91] and [113].

Proposition 115. x \ (y ∩ z) = (x \ y) ∪ (x \ z).

Proof. Follows by set extensionality.

Proposition 116. x \ (y ∪ z) = (x \ y) ∩ (x \ z).

Proof. Follows by set extensionality.

Proposition 117. x ∩ (y \ z) = (x ∩ y) \ (x ∩ z).

Proof. Follows by set extensionality.

Proposition 118. Let A,B be sets. Suppose A ⊂ B. Then B \A is inhabited.

Proof. Take b such that b ∈ B and b /∈ A. Then b ∈ B \A.

Proposition 119. B \A ⊆ B.
Proposition 120. Suppose C ⊆ A. Suppose C ∩B = ∅. Then C ⊆ A \B.
Proposition 121. Suppose A ⊆ B. Then C \A ⊇ C \B.
Proposition 122. Suppose A ∩B = ∅. Then A \B = A.
Proposition 123. A \B = ∅ iff A ⊆ B.
Proposition 124. Suppose B ⊆ A \ C and c /∈ B. Then B ⊆ A \ cons(c, C).
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Proposition 125. Suppose B ⊆ A \ cons(c, C). Then B ⊆ A \ C and c /∈ B.
Proposition 126. A \ cons(a,B) = (A \ {a}) \B.

Proof. Follows by set extensionality.

Proposition 127. A \ cons(a,B) = (A \B) \ {a}.

Proof. Follows by set extensionality.

Proposition 128. A ∩ (B \A) = ∅.

Proof. Follows by set extensionality.

Proposition 129. Suppose A ⊆ B. A ∪ (B \A) = B.

Proof. Follows by set extensionality.

Proposition 130. A ⊆ B ∪ (A \B).
Proposition 131. Suppose A ⊆ B ⊆ C. Then B \ (C \A) = A.

Proof. Follows by set extensionality.

Proposition 132. Then (A ∪B) \ (B \A) = A.

Proof. Follows by set extensionality.

Proposition 133. Suppose A,B ⊆ C. Then A \B = A ∩ (C \B).

Proof. Follows by set extensionality.

1.8 Tuples
As with unordered pairs, orderd pairs are a primitive construct and n-tuples desugar
to iterated applications of the primitive operator (−,−). For example (a, b, c, d) equals
(a, (b, (c, d))) by definition. While ordered pairs could be encoded set-theoretically, we
simply postulate the defining property to prevent misguiding proof automation.
Axiom 134. (a, b) = (a′, b′) iff a = a′ ∧ b = b′.
Axiom 135. (a, b) ̸= ∅.
Axiom 136. (a, b) ̸= a.
Axiom 137. (a, b) ̸= b.

Repeated application of the defining property of pairs yields the defining property of
all tuples.
Proposition 138. (a, b, c) = (a′, b′, c′) iff a = a′ ∧ b = b′ ∧ c = c′.

There are primitive projections fst and snd that satisfy the following axioms.
Axiom 139. fst(a, b) = a.
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Axiom 140. snd(a, b) = b.
Proposition 141. (a, b) = (fst(a, b), snd(a, b)).
Definition 142. A×B = {(a, b) | a ∈ A, b ∈ B}.
Proposition 143. Suppose (x, y) ∈ X × Y . Then x ∈ X and y ∈ Y .

Proof. Take x′, y′ such that x′ ∈ X ∧ y′ ∈ Y ∧ (x, y) = (x′, y′) by definition [142]. Then
x = x′ and y = y′ by axiom [134].

Proposition 144. Suppose x ∈ X and y ∈ Y . Then (x, y) ∈ X × Y .
Proposition 145. ∅ × Y = ∅.
Proposition 146. X × ∅ = ∅.
Proposition 147. X × Y is empty iff X is empty or Y is empty.

Proof. Follows by definitions [18] and [142].

Proposition 148. Suppose c ∈ A×B. Then fst c ∈ A.

Proof. Take a, b such that c = (a, b) and a ∈ A by definition [142]. a = fst c by ax-
iom [139].

Proposition 149. Suppose c ∈ A×B. Then snd c ∈ B.

Proof. Take a, b such that c = (a, b) and b ∈ B by definition [142]. b = snd c by
axiom [140].

Proposition 150. Suppose p ∈ X × Y . Then there exist x, y such that x ∈ X and
y ∈ Y and p = (x, y).
Proposition 151. Suppose p ∈ X × Y . Then fst p ∈ X and snd p ∈ Y .

1.9 Additional results about cons
Proposition 152. Suppose x ∈ X. Suppose Y ⊆ X. Then cons(x, Y ) ⊆ X.
Proposition 153. Suppose cons(x, Y ) ⊆ X. Then x ∈ X and Y ⊆ X.
Proposition 154. cons(x, Y ) ⊆ X iff x ∈ X and Y ⊆ X.
Proposition 155. If C ⊆ B, then C ⊆ cons(a,B).
Corollary 156. X ⊆ cons(y,X).
Abbreviation 157. B \ {a} = B \ {a}.
Proposition 158. Suppose a ∈ C ∧ C \ {a} ⊆ B. Then C ⊆ cons(a,B).

Proof. Follows by propositions [123] and [126].

Proposition 159. Suppose C ⊆ B. Then C ⊆ cons(a,B).
Proposition 160. Suppose C ⊆ cons(a,B). Then C ⊆ B ∨ (a ∈ C ∧ C \ {a} ⊆ B).
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Proof. Follows by propositions [123] and [126], definition [4], and axiom [27].

Proposition 161. C ⊆ cons(a,B) iff C ⊆ B ∨ (a ∈ C ∧ C \ {a} ⊆ B).
Proposition 162. B \ {a} = B \ {a}.

Proof. Follows by set extensionality.

Proposition 163. {a} ∪B = cons(a,B).

Proof. Follows by set extensionality.

Proposition 164. cons(a, cons(b, C)) = cons(b, cons(a,C)).

Proof. Follows by set extensionality.

Proposition 165. Suppose a ∈ A. Then cons(a,A) = A.

Proof. Follows by set extensionality.

Proposition 166. Suppose a ∈ A. Then cons(a,A \ {a}) = A.

Proof. Follows by set extensionality.

Proposition 167. Then cons(a, cons(a,B)) = cons(a,B).

Proof. Follows by set extensionality.

Proposition 168. Suppose B is inhabited. Then
⋂
cons(a,B) = a ∩

⋂
B.

Proof. cons(a,B) is inhabited. Thus for all c we have c ∈
⋂
cons(a,B) iff c ∈ a ∩

⋂
B

by proposition [48], axiom [27], and definition [80]. Follows by extensionality.

1.10 Successor
Definition 169. x+ = cons(x, x).
Proposition 170. x ∈ x+.
Proposition 171. Suppose x ∈ y. Then x ∈ y+.
Proposition 172. Suppose x ∈ y+. Then x = y or x ∈ y.
Proposition 173. x ∈ y+ iff x = y or x ∈ y.
Proposition 174. x+ ̸= ∅.
Proposition 175. Suppose x+ ⊆ y. Then x ∈ y.
Proposition 176. x+ ̸= x.
Proposition 177. Suppose x+ = y+. Then x = y.

Proof. Suppose not. x+ ⊆ y+. Hence x ∈ y+. Then x ∈ y. y+ ⊆ x+. Hence y ∈ x+.
Then y ∈ x. Contradiction.
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Proposition 178. x ⊆ x+.
Proposition 179. Suppose x ∈ y and x ⊆ y. Then x+ ⊆ y.
Proposition 180. Suppose x+ ⊆ y. Then x ∈ y and x ⊆ y.
Proposition 181. There exists no z such that x ⊂ z ⊂ x+.

Proof. Follows by definitions [4], [12] and [169] and propositions [15] and [172].

1.11 Symmetric difference
Definition 182. x△ y = (x \ y) ∪ (y \ x).
Proposition 183. x△ y = (x ∪ y) \ (y ∩ x).

Proof. Follows by set extensionality.

Proposition 184. If z ∈ x△ y, then either z ∈ x or z ∈ y.
Proposition 185. If either z ∈ x or z ∈ y, then z ∈ x△ y.

Proof. If z ∈ x and z ̸∈ y, then z ∈ x \ y. If z ̸∈ x and z ∈ y, then z ∈ y \ x.

Proposition 186. x△ (y △ z) = (x△ y)△ z.

Proof. Follows by set extensionality.

Proposition 187. x△ y = y △ x.

Proof. Follows by set extensionality.

Proposition 188. Suppose A ⊆ C. Then A×B ⊆ C ×B.

Proof. It suffices to show that for all w ∈ A×B we have w ∈ C ×B.

Proposition 189. Suppose B ⊆ D. Then A×B ⊆ A×D.

Proof. It suffices to show that for all w ∈ A×B we have w ∈ A×D.

Proposition 190. Suppose w ∈ (A ∩B)× (C ∩D). Then w ∈ (A× C) ∩ (B ×D).

Proof. Take a, c such that w = (a, c) by proposition [150]. Then a ∈ A,B and c ∈ C,D
by proposition [143] and definition [80]. Thus w ∈ (A× C), (B ×D).

Proposition 191. Suppose w ∈ (A× C) ∩ (B ×D). Then w ∈ (A ∩B)× (C ∩D).

Proof. w ∈ A × C. Take a, c such that w = (a, c). a ∈ A,B by definition [80]
and proposition [143]. c ∈ C,D by definition [80] and proposition [143]. Thus (a, c) ∈
(A ∩B)× (C ∩D) by definition [142] and proposition [81].

Proposition 192. (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D).

Proof. Follows by set extensionality.
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Proposition 193. (X ∩ Y )× Z = (X × Z) ∩ (Y × Z).

Proof. Follows by set extensionality.

Proposition 194. X × (Y ∩ Z) = (X × Y ) ∩ (X × Z).

Proof. Follows by set extensionality.

Proposition 195. Suppose w ∈ (A ∪ B) × (C ∪D). Then w ∈ (A × C) ∪ (B ×D) ∪
(A×D) ∪ (B × C).

Proof. Take a, c such that w = (a, c). a ∈ A or a ∈ B by axiom [56] and proposition [143].
c ∈ C or c ∈ D by axiom [56] and proposition [143]. Thus (a, c) ∈ (A × C) or (a, c) ∈
(B×D) or (a, c) ∈ (A×D) or (a, c) ∈ (B×C). Thus (a, c) ∈ (A×C)∪ (B×D)∪ (A×
D) ∪ (B × C).

Proposition 196. Suppose w ∈ (A × C) ∪ (B × D) ∪ (A × D) ∪ (B × C). Then
w ∈ (A ∪B)× (C ∪D).

Proof. Case: w ∈ (A × C). Take a, c such that w = (a, c) ∧ a ∈ A ∧ c ∈ C by defini-
tion [142]. Then a ∈ A ∪B and c ∈ C ∪D. Follows by proposition [144].

Case: w ∈ (B×D). Take b, d such that w = (b, d)∧ b ∈ B ∧ d ∈ D by definition [142].
Then b ∈ A ∪B and d ∈ C ∪D. Follows by proposition [144].

Case: w ∈ (A×D). Take a, d such that w = (a, d)∧ a ∈ A∧ d ∈ D by definition [142].
Then a ∈ A ∪B and d ∈ C ∪D. Follows by proposition [144].

Case: w ∈ (B × C). Take b, c such that w = (b, c) ∧ b ∈ B ∧ c ∈ C by definition [142].
Then b ∈ A ∪B and c ∈ C ∪D. Follows by proposition [144].

Proposition 197. (A ∪B)× (C ∪D) = (A× C) ∪ (B ×D) ∪ (A×D) ∪ (B × C).

Proof. Follows by set extensionality.

Proposition 198. (X ∪ Y )× Z = (X × Z) ∪ (Y × Z).

Proof. Follows by set extensionality.

Proposition 199. X × (Y ∪ Z) = (X × Y ) ∪ (X × Z).

Proof. Follows by set extensionality.
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1.12 Powerset
Abbreviation 200. The powerset of X denotes Pow(X).
Axiom 201. B ∈ Pow(A) iff B ⊆ A.
Proposition 202. Suppose A ⊆ B. Then A ∈ Pow(B).
Proposition 203. Let A ∈ Pow(B). Then A ⊆ B.
Proposition 204. ∅ ∈ Pow(A).
Proposition 205. A ∈ Pow(A).
Proposition 206. Let A be a set. Let B be a subset of Pow(A). Then

⋃
B ⊆ A.

Proof. Follows by definition [4], proposition [203], and axiom [42].

Corollary 207. Let A be a set. Let B be a subset of Pow(A). Then
⋃
B ∈ Pow(A).

Proof. Follows by axiom [201] and proposition [206].

Proposition 208.
⋃

Pow(A) = A.

Proof. Follows by set extensionality.

Proposition 209.
⋂

Pow(A) = ∅.

Proof. Follows by set extensionality.

Proposition 210. Pow(A) ∪ Pow(B) ⊆ Pow(A ∪B).

Proof. Pow(A) ⊆ Pow(A)∪Pow(B) by proposition [64]. Pow(B) ⊆ Pow(A)∪Pow(B) by
proposition [65]. Follows by definition [4], axioms [56] and [201], and propositions [14]
and [203].

Proposition 211. Pow(∅) = {∅}.
Proposition 212. Pow(A) ∪ Pow(B) ⊆ Pow(A ∪B).
Proposition 213. A ⊆ Pow(

⋃
A).

Proof. Follows by definition [4], axiom [201], and proposition [43].

Proposition 214.
⋃

Pow(A) = A.
Proposition 215.

⋃
A ∈ Pow(B) iff A ∈ Pow(Pow(B)).

Proposition 216. Pow(A ∩B) = Pow(A) ∩ Pow(B).

Proof. Follows by axioms [2] and [201], definition [80], and proposition [93].

15



1.13 Bipartitions
Abbreviation 217. C is partitioned by A and B iff A,B ̸= ∅ and A is disjoint from
B and A ∪B = C.
Definition 218. BipartitionsX = {p ∈ Pow(X)×Pow(X) | X is partitioned by fst p and snd p}.
Abbreviation 219. P is a bipartition of X iff P ∈ BipartitionsX.
Proposition 220. Suppose C is partitioned by A and B. Then (A,B) is a bipartition
of C.

Proof. (A,B) ∈ Pow(C) × Pow(C). C is partitioned by fst(A,B) and snd(A,B). Thus
(A,B) is a bipartition of C by definition [218].

Proposition 221. Suppose (A,B) is a bipartition of C. Then C is partitioned by A
and B.

Proof. fst(A,B) = A. snd(A,B) = B.

Proposition 222. Bipartitions ∅ is empty.
Proposition 223. Suppose d /∈ C. Suppose A∪B = cons(d,C). Suppose A,B ̸= {d}.
Then A \ {d} ∪B \ {d} = C.

Proof. Follows by set extensionality.

Proposition 224. Suppose d /∈ C. Suppose cons(d,C) is partitioned by A and B.
Suppose A,B ̸= {d}. Then C is partitioned by A \ {d} and B \ {d}.

Proof. A \ {d}, B \ {d} ̸= ∅. A \ {d} ∪B \ {d} = C by proposition [223].

1.14 Partitions
Definition 225. P is a partition iff ∅ /∈ P and for all B,C ∈ P such that B ̸= C we
have B is disjoint from C.
Abbreviation 226. P is a partition of A iff P is a partition and

⋃
P = A.

Proposition 227. ∅ is a partition of ∅.
Definition 228. P ′ is a refinement of P iff for every A′ ∈ P ′ there exists A ∈ P such
that A′ ⊆ A.
Abbreviation 229. P ′ ≤ P iff P ′ is a refinement of P .
Proposition 230. Suppose P ′′ ≤ P ′ ≤ P . Then P ′′ ≤ P .

Proof. It suffices to show that for all A′′ ∈ P ′′ there exists A ∈ P such that A′′ ⊆ A. Fix
A′′ ∈ P ′′. Take A′ ∈ P ′ such that A′′ ⊆ A′ by definition [228]. Take A ∈ P such that
A′ ⊆ A. Then A′′ ⊆ A. Follows by definition.
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1.15 Cantor’s theorem
Theorem 231. (Cantor) There exists no surjection from A to Pow(A).

Proof. Suppose not. Consider a surjection f from A to Pow(A). Let B = {a ∈ A | a /∈
f(a)}. Then B ∈ Pow(A). There exists a′ ∈ A such that f(a′) = B by the definition of
surjectivity. Now a′ ∈ B iff a′ /∈ f(a′) = B. Contradiction.

2 Filters
Abbreviation 232. F is upward-closed in S iff for all A,B such that A ⊆ B ⊆ S and
A ∈ F we have B ∈ F .
Definition 233. F is a filter on S iff F is a family of subsets of S and S is inhabited
and S ∈ F and ∅ /∈ F and F is closed under binary intersections and F is upward-closed
in S.
Definition 234. ↑SA = {X ∈ Pow(S) | A ⊆ X}.
Proposition 235. Suppose A ⊆ S. Suppose A is inhabited. Then ↑SA is a filter on S.

Proof. S is inhabited. ↑SA is a family of subsets of S. S ∈ ↑SA. ∅ /∈ ↑SA. ↑SA is closed
under binary intersections. ↑SA is upward-closed in S. Follows by definition [233].

Proposition 236. Suppose A ⊆ S. A ∈ ↑SA.

Proof. A ∈ Pow(S).

Proposition 237. Let X ∈ Pow(S). Suppose X /∈ ↑SA. Then A ̸⊆ X.

Proof.

Definition 238. F is a maximal filter on S iff F is a filter on S and there exists no
filter F ′ on S such that F ⊂ F ′.
Proposition 239. Suppose a ∈ S. Then ↑S{a} is a filter on S.

Proof. {a} ⊆ S. {a} is inhabited. Follows by proposition [235].

Proposition 240. Suppose a ∈ S. Then ↑S{a} is a maximal filter on S.

Proof. {a} ⊆ S. {a} is inhabited. Thus ↑S{a} is a filter on S by proposition [235]. It
suffices to show that there exists no filter F ′ on S such that ↑S{a} ⊂ F ′. Suppose not.
Take a filter F ′ on S such that ↑S{a} ⊂ F ′. Take X ∈ F ′ such that X /∈ ↑S{a}. X ∈
Pow(S). Thus {a} ̸⊆ X by proposition [237]. Thus a /∈ X. {a} ∈ F ′ by definitions [12]
and [234] and propositions [7], [9], [57], [71] and [202]. Thus ∅ = X ∩ {a}. Hence ∅ ∈ F ′

by definition [233]. Follows by contradiction to the definition of a filter.
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3 Regularity
Abbreviation 241. a is an ∈-minimal element of A iff a ∈ A and a ̸⊃⊂ A.
Lemma 242. For all a,A such that a ∈ A there exists b ∈ A such that b ̸⊃⊂ A.

Proof by ∈-induction on a. Case: a ̸⊃⊂ b. Straightforward.
Case: a ⊃⊂ b. Take a′ such that a′ ∈ a, b. Straightforward.

Proposition 243. (Regularity) Let A be an inhabited set. Then there exists a
∈-minimal element of A.

Proof. Follows by lemma [242] and definition [18].

Theorem 244. (Foundation) Let A be a set. Then A = ∅ or there exists a ∈ A
such that for all x ∈ a we have x /∈ A.

Proof. Case: A = ∅. Straightforward.
Case: A is inhabited. Take a such that a is a ∈-minimal element of A. Then for all

x ∈ a we have x /∈ A.

.
Proposition 245. For all sets A we have A ̸∈ A.

Proof by ∈-induction. Straightforward.

Proposition 246. If a ∈ A, then a ̸= A.
Proposition 247. For all sets a, b such that a ∈ b we have b /∈ a.

Proof by ∈-induction on a. Straightforward.

3.1 Fixpoints
Definition 248. a is a fixpoint of f iff a ∈ dom f and f(a) = a.
Definition 249. f is ⊆-preserving iff for all A,B ∈ dom f such that A ⊆ B we have
f(A) ⊆ f(B).
Theorem 250. (Knaster–Tarski) Let f be a ⊆-preserving function from Pow(A)
to Pow(A). Then there exists a fixpoint of f .

Proof. dom f = Pow(A). Let P = {a ∈ Pow(A) | a ⊆ f(a)}. P ⊆ Pow(A). Thus⋃
P ∈ Pow(A). Hence f(

⋃
P ) ∈ Pow(A) by proposition [501].

Show
⋃
P ⊆ f(

⋃
P ). Subproof. It suffices to show that every element of

⋃
P is an

element of f(
⋃
P ). Fix u ∈

⋃
P . Take p ∈ P such that u ∈ p. Then u ∈ f(p). p ⊆

⋃
P .

f(p) ⊆ f(
⋃
P ) by definition [249]. Thus u ∈ f(

⋃
P ). □

Now f(
⋃
P ) ⊆ f(f(

⋃
P )) by definition [249]. Thus f(

⋃
P ) ∈ P by definition.

Hence f(
⋃
P ) ⊆

⋃
P .

Thus f(
⋃

P ) =
⋃

P by proposition [8]. Follows by definition [248].
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4 Relations
Definition 251. R is a relation iff for all w ∈ R there exists x, y such that w = (x, y).
Definition 252. a is comparable with b in R iff a R b or b R a.
Proposition 253. Let R,S be relations. Suppose for all x, y we have x R y iff x S y.
Then R = S.

Proof. Follows by set extensionality.

Abbreviation 254. F is a family of relations iff every element of F is a relation.
Proposition 255. Let F be a family of relations. Then

⋃
F is a relation.

Proposition 256. Let F be a family of relations. Then
⋂
F is a relation.

Proposition 257. Let R,S be relations. Then R ∪ S is a relation.
Proposition 258. Suppose R ⊆ A × B. Suppose S ⊆ C × D. Then R ∪ S ⊆
(A ∪ C)× (B ∪D).

Proof. Follows by definition [4], propositions [66] and [196], and axiom [56].

Proposition 259. Let R,S be relations. Then R ∩ S is a relation.
Proposition 260. Let R,S be relations. Then R \ S is a relation.

4.1 Converse of a relation
Definition 261. RT = {z | ∃w ∈ R.∃x, y.w = (x, y) ∧ z = (y, x)}.
Proposition 262. If y R x, then x RT y.
Proposition 263. If x RT y, then y R x.
Proposition 264. x RT y iff y R x.
Proposition 265. RT is a relation.
Proposition 266. x RTT

y iff x R y.
Proposition 267. Let R be a relation. Then RTT

= R.

Proof. Follows by set extensionality.

Proposition 268. Suppose R ⊆ A×B. Then RT ⊆ B ×A.

Proof. It suffices to show that every element of RT is an element of B×A by definition [4].
Fix w ∈ RT. Take x, y such that w = (y, x) and x R y by definition [261]. Now
(x, y) ∈ A × B by definition [4]. Thus x ∈ A and y ∈ B by proposition [143]. Hence
(y, x) ∈ B ×A by proposition [144].

Proposition 269. Then B ×AT = A×B.
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Proof. For all w we have w ∈ B ×AT iff w ∈ A × B by definitions [142] and [261]
and propositions [143] and [150]. Follows by extensionality.

Proposition 270. Then ∅T = ∅.

Proof. Follows by set extensionality.

Proposition 271. Let R be a relation. If R ⊆ S, then RT ⊆ ST.

Proof. Follows by definitions [4], [251] and [261].

Proposition 272. Let R be a relation. If RT ⊆ ST, then R ⊆ S.

Proof. Follows by definitions [4], [251] and [261] and propositions [266] and [271].

Proposition 273. Let R be a relation. RT ⊆ ST iff R ⊆ S.

Proof. Follows by propositions [271] and [272].

Proposition 274. (R ∪ S)T = RT ∪ ST.

Proof. (R ∪ S)T is a relation by proposition [265]. RT ∪ ST is a relation by proposi-
tions [257] and [265]. For all a, b we have (a, b) ∈ (R ∪ S)T iff (a, b) ∈ RT ∪ ST by
axiom [56] and proposition [264]. Follows by extensionality.

Proposition 275. (R ∩ S)T = RT ∩ ST.

Proof. (R ∩ S)T is a relation by proposition [265]. RT ∩ ST is a relation by proposi-
tions [259] and [265]. For all a, b we have (a, b) ∈ (R ∩ S)T iff (a, b) ∈ RT ∩ ST by
definition [80] and proposition [264]. Follows by extensionality.

Proposition 276. (R \ S)T = RT \ ST.

Proof. (R \ S)T is a relation by proposition [265]. RT \ ST is a relation by proposi-
tions [260] and [265]. For all a, b we have (a, b) ∈ (R \ S)T iff (a, b) ∈ RT \ ST. Follows
by extensionality.

4.1.1 Domain of a relation

Definition 277. domR = {x | ∃w ∈ R.∃y.w = (x, y)}.
Proposition 278. a ∈ domR iff there exists b such that a R b.
Proposition 279. Suppose a R b. Then a ∈ domR.

Proof. Follows by proposition [278].

Proposition 280. dom ∅ = ∅.

Proof. Follows by set extensionality.

Proposition 281. dom(A×B) ⊆ A.
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Proposition 282. Suppose b ∈ B. dom(A×B) = A.

Proof. Follows by set extensionality.

Proposition 283. dom cons((a, b), R) = cons(a, domR).

Proof. Follows by set extensionality.

Proposition 284. dom(A ∪B) = domA ∪ domB.

Proof. Follows by set extensionality.

Proposition 285. dom(A ∩B) ⊆ domA ∩ domB.

Proof. Follows by definitions [4] and [80] and proposition [278].

Proposition 286. dom(A \B) ⊇ domA \ domB.

4.1.2 Range of a relation

Definition 287. ranR = {y | ∃w ∈ R.∃x.w = (x, y)}.
Proposition 288. b ∈ ranR iff there exists a such that a R b.
Proposition 289. Suppose a R b. Then b ∈ ranR.

Proof. Follows by proposition [288].

Proposition 290. ran ∅ = ∅.

Proof. Follows by set extensionality.

Proposition 291. ran(A×B) ⊆ B.
Proposition 292. Suppose a ∈ A. ran(A×B) = B.

Proof. Follows by set extensionality.

Proposition 293. ran(cons((a, b), R)) = cons(b, ranR).

Proof. Follows by set extensionality.

Proposition 294. ran(A ∪B) = ranA ∪ ranB.

Proof. Follows by set extensionality.

Proposition 295. ran(A ∩B) ⊆ ranA ∩ ranB.

Proof. Follows by definitions [4] and [80] and proposition [288].

Proposition 296. ran(A \B) ⊇ ranA \ ranB.

Proof. Follows by definitions [4] and [106] and proposition [288].
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4.1.3 Domain and range of converse

Proposition 297. domRT = ranR.

Proof. Follows by set extensionality.

Proposition 298. ranRT = domR.

Proof. Follows by set extensionality.

4.1.4 Field of a relation

Definition 299. fieldR = domR ∪ ranR.
Proposition 300. c ∈ fieldR iff there exists d such that c R d or d R c.

Proof. Follows by definition [299], propositions [278] and [288], and axiom [56].

Proposition 301. Suppose (a, b) ∈ R. Then a ∈ fieldR.

Proof. Follows by definitions [277] and [299] and axiom [56].

Proposition 302. Suppose (a, b) ∈ R. Then b ∈ fieldR.

Proof. Follows by definitions [287] and [299] and axiom [56].

Proposition 303. Then domR ⊆ fieldR.

Proof. Follows by definition [299] and proposition [64].

Proposition 304. Then ranR ⊆ fieldR.

Proof. Follows by definition [299] and proposition [65].

Proposition 305. field(A×B) ⊆ A ∪B.

Proof. Follows by definition [299] and propositions [66], [281] and [291].

Proposition 306. Let R be a relation. Suppose w ∈ R. Then w ∈ fieldR× fieldR.

Proof. Take a, b such that w = (a, b) by definition [251]. Then a, b ∈ fieldR by proposi-
tion [300]. Thus (a, b) ∈ fieldR× fieldR by proposition [144].

Proposition 307. Let R be a relation. Then R ⊆ fieldR× fieldR.

Proof. Follows by proposition [306] and definition [4].

Proposition 308. field(A×A) = A.
Proposition 309. field ∅ = ∅.
Proposition 310. field(cons((a, b), R)) = cons(a, cons(b, fieldR)).
Proposition 311. field(A ∪B) = fieldA ∪ fieldB.
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Proof.

field(A ∪B) = dom(A ∪B) ∪ ran(A ∪B) [by definition [299]]
= (domA ∪ domB) ∪ (ranA ∪ ranB) [by propositions [284] and [294]]
= (domA ∪ ranA) ∪ (domB ∪ ranB) [by propositions [60] and [61]]
= fieldA ∪ fieldB [by definition [299]]

Proposition 312. field(A ∩B) ⊆ fieldA ∩ fieldB.

Proof. Follows by definition [4] and propositions [93] and [300].

Proposition 313. field(A \B) ⊇ fieldA \ fieldB.

Proof. Follows by propositions [119] and [300] and definitions [4] and [106].

Proposition 314. fieldRT = fieldR.

Proof. Follows by definition [299] and propositions [60], [297] and [298].

4.2 Image
Definition 315. R→(A) = {b ∈ ranR | ∃a ∈ A.a R b}.
Proposition 316. Suppose a ∈ A and a R b. Then b ∈ R→(A).

Proof. Follows by definitions [287] and [315].

Proposition 317. b ∈ R→(A) iff there exists a ∈ A such that a R b.
Proposition 318. Suppose A ⊆ B. Then R→(A) ⊆ R→(B).

Proof. Follows by definition [4] and proposition [317].

Proposition 319. Then R→(A) ⊆ ranR.
Proposition 320. Then R→(domR) = ranR.
Proposition 321. R→(A ∪B) = R→(A) ∪R→(B).

Proof. Follows by axioms [2] and [56] and proposition [317].

Proposition 322. R→(A ∩B) ⊆ R→(A) ∩R→(B).

Proof. Follows by proposition [317] and definitions [4] and [80].

Proposition 323. R→(A \B) ⊇ R→(A) \R→(B).

Proof. Follows by proposition [317] and definitions [4] and [106].

Proposition 324. b ∈ R→({a}) iff a R b.
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Proposition 325. Suppose b ∈ R→({a}). Then b ∈ ranR and (a, b) ∈ R.

Proof. Follows by propositions [9], [36], [317] and [319].

Proposition 326. R→({a}) = {b ∈ ranR | (a, b) ∈ R}.
Proposition 327. R→(∅) = ∅.

Proof. Follows by set extensionality.

4.3 Preimage
Definition 328. R←(B) = {a ∈ domR | ∃b ∈ B.a R b}.
Proposition 329. a ∈ R←(B) iff there exists b ∈ B such that a R b.
Proposition 330. R←(B) = RT→(B).

Proof. Follows by set extensionality.

Proposition 331. Suppose A ⊆ B. Then R←(A) ⊆ R←(B).
Proposition 332. Then R←(A) ⊆ domR.
Proposition 333. R←(A ∪B) = R←(A) ∪R←(B).

Proof. Follows by set extensionality.

Proposition 334. R←(A ∩B) ⊆ R←(A) ∩R←(B).
Proposition 335. R←(A \B) ⊇ R←(A) \R←(B).

4.4 Upward and downward closure
Definition 336. a↑R = {b ∈ ranR | a R b}.
Definition 337. b↓R = {a ∈ domR | a R b}.
Proposition 338. a ∈ b↓R iff a R b.

4.5 Relation (and later also function) composition
Composition ignores the non-relational parts of sets. Note that the order is flipped
from usual relation composition. This lets us use the same symbol for composition of
functions.
Definition 339. S ◦R = {(x, z) | x ∈ domR, z ∈ ranS | ∃y. x R y S z}.
Proposition 340. S ◦R is a relation.
Proposition 341. Suppose x R y S z. Then x (S ◦R) z.

Proof. x ∈ domR and z ∈ ranS. Then (x, z) ∈ S ◦R by definition [339].

Proposition 342. Suppose x (S ◦R) z. Then there exists y such that x R y S z.
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Proof. There exists y such that x R y S z by definition [339] and axiom [134].

Proposition 343. x (S ◦R) z iff there exists y such that x R y S z.
Proposition 344. (T ◦ S) ◦R = T ◦ (S ◦R).

Proof. For all a, b we have (a, b) ∈ (T ◦S) ◦R iff (a, b) ∈ T ◦ (S ◦R) by proposition [343].
Now (T ◦ S) ◦R is a relation and T ◦ (S ◦R) is a relation by proposition [340]. Follows
by relation extensionality.

Proposition 345. Suppose (a, c) ∈ RT ◦ ST. Then (a, c) ∈ (S ◦R)T.

Proof. Take b such that a ST b RT c. Now c R b S a by proposition [264]. Hence
c (S ◦R) a. Thus a (S ◦R)T c.

Proposition 346. Suppose (a, c) ∈ (S ◦R)T. Then (a, c) ∈ RT ◦ ST.

Proof. c (S ◦R) a. Take b such that c R b S a. Now a ST b RT c.

Proposition 347. (S ◦R)T = RT ◦ ST.

Proof. (S ◦R)T is a relation. RT ◦ST is a relation. For all x, y we have (x, y) ∈ (S ◦R)T

iff (x, y) ∈ RT ◦ ST. Thus (S ◦R)T = RT ◦ ST by proposition [253].

4.6 Restriction
Definition 348. R

∣∣
X

= {w ∈ R | ∃x, y.x ∈ X ∧ w = (x, y)}.
Proposition 349. a R

∣∣
X

b iff a R b and a ∈ X.
Proposition 350. R

∣∣
X

⊆ R.
Proposition 351. Suppose x ∈ domR

∣∣
X

. Then x ∈ domR,X.

Proof. Take y such that x ∈ X and (x, y) ∈ R
∣∣
X

. Then (x, y) ∈ R. Thus x ∈ domR.

Proposition 352. Suppose x ∈ domR,X. Then x ∈ domR
∣∣
X

.

Proof. Take y such that (x, y) ∈ R by proposition [278]. Then (x, y) ∈ R
∣∣
X

. Thus
x ∈ domR

∣∣
X

.

Proposition 353. Suppose R is a relation. R
∣∣
X

= R ∩ (X × ranR).

Proof. For all a we have a ∈ R ∩ (X × ranR) iff a ∈ R
∣∣
X

by definitions [80] and [348]
and propositions [144], [150] and [288]. Follows by extensionality.

Corollary 354. Suppose R is a relation. domR
∣∣
X

= domR ∩X.

Proof. Follows by set extensionality.

Proposition 355. Suppose V ⊆ U . Then R
∣∣
U

∣∣
V
= R

∣∣
V

.
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Proof. For all w we have w ∈ R
∣∣
U

∣∣
V

iff w ∈ R
∣∣
V

by definitions [4] and [348]. Follows by
extensionality.

Proposition 356. Let R be a relation. Then R
∣∣
domR

= R.

Proof. For all w we have w ∈ R
∣∣
domR

iff w ∈ R by definitions [251], [277] and [348].
Follows by extensionality.

Proposition 357. Then domR
∣∣
X

⊆ X.
Proposition 358. Suppose X ⊆ domR. Let b ∈ ranR

∣∣
X

. Then b ∈ R→(X).

Proof. Take a ∈ X such that (a, b) ∈ R
∣∣
X

by definitions [4], [277] and [287] and propo-
sition [357]. Then a R b and b ∈ ranR. Thus b ∈ R→(X) by definition [315].

Proposition 359. Suppose X ⊆ domR. Let b ∈ R→(X). Then b ∈ ranR
∣∣
X

.

Proof. Follows by definition [315] and propositions [289] and [349].

Proposition 360. Suppose X ⊆ domR. Then ranR
∣∣
X

= R→(X).

Proof. Follows by set extensionality.

Proposition 361. Suppose X ⊆ domR. Then R
∣∣
X

→
(A) = R→(X ∩A).

Proof. For all b we have b ∈ R
∣∣
X

→
(A) iff b ∈ R→(X ∩A) by propositions [317] and [349]

and definition [80]. Follows by extensionality.

4.7 Set of relations
Abbreviation 362. R is a binary relation on X iff R ⊆ X ×X.
Proposition 363. Let R be a relation. Suppose ranR ⊆ B. Suppose domR ⊆ A.
Suppose w ∈ R. Then w ∈ A×B.

Proof. Take a, b such that (a, b) = w. Then a ∈ domR and b ∈ ranR. Thus a ∈ A and
b ∈ B. Thus (a, b) ∈ A×B.

Proposition 364. Let R be a relation. Suppose ranR ⊆ B. Suppose domR ⊆ A.
Then R ⊆ A×B.
Proposition 365. Suppose R ⊆ A×B. Suppose a ∈ domR. Then a ∈ A.

Proof. Take w, b such that w ∈ R and w = (a, b). Follows by definition [277] and propo-
sitions [9] and [143].

Proposition 366. Suppose R ⊆ A×B. Then domR ⊆ A.

Proof. Follows by definition [4] and proposition [365].

Proposition 367. Suppose R ⊆ A×B. Suppose b ∈ ranR. Then b ∈ B.
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Proof. Take w, a such that w ∈ R and w = (a, b). Follows by definition [287] and propo-
sitions [9] and [143].

Proposition 368. Suppose R ⊆ A×B. Then ranR ⊆ B.

Proof. Follows by definition [4] and proposition [367].

Definition 369. Rel(A,B) = Pow(A×B).
Proposition 370. Suppose R ⊆ A×B. Then R ∈ Rel(A,B).
Proposition 371. Let R be a relation. Suppose domR ⊆ A. Suppose ranR ⊆ B.
Then R ∈ Rel(A,B).

Proof. R ⊆ A×B.

Proposition 372. Suppose R ∈ Rel(A,B). Then R ⊆ A×B.
Proposition 373. Suppose R ∈ Rel(A,B). Then domR ⊆ A.

Proof. Follows by propositions [366] and [372].

Proposition 374. Suppose R ∈ Rel(A,B). Then ranR ⊆ B.

Proof. Follows by propositions [368] and [372].

Proposition 375. Let R ∈ Rel(A,B). Then R is a relation.

Proof. It suffices to show that for all w ∈ R there exists x, y such that w = (x, y). Fix
w ∈ R. Now R ⊆ A×B by proposition [372]. Thus w ∈ A×B.

Proposition 376. Let R ∈ Rel(A,B). Suppose A ⊆ C. Then R ∈ Rel(C,B).

Proof. R ⊆ A×B ⊆ C ×B. Thus R ⊆ C ×B.

Proposition 377. Let R ∈ Rel(A,B). Suppose B ⊆ D. Then R ∈ Rel(A,D).

Proof. R ⊆ A×B ⊆ A×D. Thus R ⊆ A×D.

Proposition 378. Let R ∈ Rel(A,B). Suppose (a, b) ∈ R. Then (a, b) ∈ A×B.

Proof. R ⊆ A×B by proposition [372].

Proposition 379. Let R ∈ Rel(A,B). Suppose (a, b) ∈ R. Then a ∈ A.

Proof. (a, b) ∈ A×B by proposition [378].

Proposition 380. Let R ∈ Rel(A,B). Suppose (a, b) ∈ R. Then b ∈ B.

Proof. (a, b) ∈ A×B by proposition [378].

Proposition 381. Let R ∈ Rel(A,B). Then R ∈ Rel(domR,B).
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Proof. R is a relation by proposition [375]. domR ⊆ domR by proposition [7]. ranR ⊆
B. Follows by proposition [371].

Proposition 382. Let R ∈ Rel(A,B). Then R ∈ Rel(A, ranR).

Proof. R is a relation by proposition [375]. domR ⊆ A. ranR ⊆ ranR by proposition [7].
Follows by proposition [371].

4.8 Identity relation
Definition 383. idA = {(a, a) | a ∈ A}.
Proposition 384. a idA b iff a = b ∈ A.

Proof. Follows by definition [383] and axiom [134].

Proposition 385. Suppose a ∈ A. Then (a, a) ∈ idA.

Proof. Follows by definition [383].

Proposition 386. Suppose w ∈ idA. Then there exists a ∈ A such that w = (a, a).

Proof. Follows by definition [383].

Proposition 387. idA is a relation.
Proposition 388. dom idA = A.

Proof. For every a ∈ A we have (a, a) ∈ idA. dom idA = A by set extensionality.

Proposition 389. ran idA = A.

Proof. For every a we have a ∈ ran idA iff a ∈ A by propositions [288] and [384]. For
every a ∈ A we have (a, a) ∈ idA. ran idA = A by set extensionality.

Proposition 390. id→A (B) = A ∩B.

Proof. Follows by set extensionality.

Proposition 391. idA ∈ Rel(A,A).

4.9 Membership relation
Definition 392. ∈A = {(a, b) | a ∈ A, b ∈ A | a ∈ b}.
Proposition 393. Suppose a, b ∈ A. Suppose a ∈ b. Then (a, b) ∈ ∈A.
Proposition 394. Suppose w ∈ ∈A. Then there exists a, b ∈ A such that w = (a, b)
and a ∈ b.

Proof. Follows by definition [392].

Proposition 395. ∈A is a relation.
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4.10 Subset relation
Definition 396. ⊆A = {(a, b) | a ∈ A, b ∈ A | a ⊆ b}.
Proposition 397. ⊆A is a relation.

4.11 Properties of relations
Definition 398. R is left quasireflexive iff for all x, y such that x R y we have x R x.
Definition 399. R is right quasireflexive iff for all x, y such that x R y we have y R y.
Definition 400. R is quasireflexive iff for all x, y such that x R y we have x R x and
y R y.
Definition 401. R is coreflexive iff for all x, y such that x R y we have x = y.
Definition 402. R is reflexive on X iff for all x ∈ X we have x R x.
Definition 403. R is irreflexive iff for all x we have (x, x) /∈ R.
Proposition 404. Suppose R is quasireflexive. Then R is reflexive on fieldR.
Proposition 405. Suppose R is reflexive on fieldR. Then R is quasireflexive.
Proposition 406. Let F be an inhabited family of relations. Suppose every element
of F is reflexive on A. Then

⋂
F is reflexive on A.

Proof. For all a ∈ A we have for all R ∈ F we have a R a. Thus for all a ∈ A we have
a (

⋂
F ) a.

Definition 407. R is antisymmetric iff for all x, y such that x R y R x we have x = y.
Definition 408. (Symmetry) R is symmetric iff for all x, y we have x R y ⇐⇒
y R x.
Definition 409. R is asymmetric iff for all x, y such that x R y we have y ̸R x.
Proposition 410. Suppose R is asymmetric. Then R is irreflexive.
Proposition 411. Suppose R is asymmetric. Then R is antisymmetric.
Proposition 412. Suppose R is antisymmetric. Suppose R is irreflexive. Then R is
asymmetric.
Definition 413. (Transitivity) R is transitive iff for all x, y, z such that x R y R z
we have x R z.
Proposition 414. Suppose R is transitive. Suppose a ∈ b↓R. Suppose c ∈ a↓R. Then
c ∈ b↓R.

Proof. c R a R b. Thus c R b by transitivity.

Proposition 415. Suppose R is transitive. Suppose a ∈ b↓R. Then a↓R ⊆ b↓R.
Definition 416. R is dense iff for all x, z such that x R z there exists y such that
x R y R z.

29



Definition 417. R is quasiconnex iff for all x, y ∈ fieldR such that x ̸= y we have
x R y or y R x.
Definition 418. R is connex on X iff for all x, y ∈ X such that x ̸= y we have x R y
or y R x.
Definition 419. R is strongly quasiconnex iff for all x, y ∈ fieldR we have x R y or
y R x.
Definition 420. R is strongly connex on X iff for all x, y ∈ X we have x R y or y R x.
Proposition 421. R is strongly quasiconnex iff R is quasiconnex and quasireflexive.

Proof. Follows by definitions [299], [402], [417] and [419] and propositions [404] and [405].

Proposition 422. Suppose R is connex on A. Let a, b ∈ A \ ranR. Then a = b.

Proof. Suppose not. a, b ∈ A. Then (a, b) ∈ R or (b, a) ∈ R by definition [418]. (a, b) /∈
R. (b, a) /∈ R. Thus a = b.

Definition 423. R is right Euclidean iff for all a, b, c such that a R b, c we have b R c.
Definition 424. R is left Euclidean iff for all a, b, c such that a, b R c we have a R b.

4.12 Quasiorders
Abbreviation 425. R is a quasiorder iff R is quasireflexive and transitive.
Abbreviation 426. R is a quasiorder on A iff R is a binary relation on A and R is
reflexive on A and transitive.
Struct 427. A quasiordered set X is a onesorted structure equipped with

1. ≤

such that

1. ≤X is a binary relation on X.

2. ≤X is reflexive on X.

3. ≤X is transitive.

Lemma 428. Let X be a quasiordered set. Let a, b, c, d ∈ X. Suppose a ≤X b ≤X

c ≤X d. Then a ≤X d.

Proof. ≤X is transitive. Thus a ≤X c ≤X d by transitivity. Hence a ≤X d by transitiv-
ity.

Proposition 429. ⊆A is a quasiorder on A.

Proof. ⊆A is reflexive on A. ⊆A is transitive.
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4.13 Equivalences
Abbreviation 430. E is a partial equivalence iff E is transitive and symmetric.
Proposition 431. Let E be a partial equivalence. Then E is quasireflexive.
Abbreviation 432. E is an equivalence iff E is a symmetric quasiorder.
Abbreviation 433. E is an equivalence on A iff E is a symmetric quasiorder on A.
Proposition 434. Let F be a family of relations. Suppose every element of F is an
equivalence. Then

⋂
F is an equivalence.

Proof.
⋂
F is quasireflexive by definition [400] and propositions [48] and [50].

⋂
F

is symmetric by definition [408] and propositions [48] and [50].
⋂
F is transitive by

definition [413] and propositions [48] and [50].

Proposition 435. Let F be an inhabited family of relations. Suppose every element
of F is an equivalence on A. Then

⋂
F is an equivalence on A.

Proof.
⋂
F is reflexive on A by proposition [406].

⋂
F is symmetric.

⋂
F is transitive.

4.13.1 Equivalence classes

Abbreviation 436. [a]E = a↓E .
Abbreviation 437. The E-equivalence class of a is [a]E .
Proposition 438. Let E be an equivalence. Let a ∈ fieldE. Then a ∈ [a]E .

Proof. a E a by definition [402] and proposition [404].

Proposition 439. Let E be an equivalence on A. Let a ∈ A. Then a ∈ [a]E .

Proof. a E a by definition [402].

Proposition 440. Let E be an equivalence on A. Let a, b ∈ A. Suppose a E b. Then
[a]E = [b]E .

Proof. Follows by set extensionality.

Proposition 441. Let E be an equivalence on A. Let a, b ∈ A. Suppose [a]E = [b]E .
Then a E b.
Proposition 442. Let E be an equivalence on A. Let a, b ∈ A. Then a E b iff
[a]E = [b]E .
Proposition 443. Let E be a partial equivalence. Suppose [a]E ̸= [b]E . Then [a]E is
disjoint from [b]E .
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Proof. Suppose not. Take c such that c ∈ [a]E , [b]E . Then c E a and c E b. E is
symmetric. Thus a E c by symmetry. E is transitive. Thus a E b by transitivity.
Then b E a by symmetry. Thus a ∈ [b]E and b ∈ [a]E by proposition [338]. Hence
[a]E ⊆ [b]E ⊆ [a]E by proposition [415]. Contradiction by proposition [8].

Corollary 444. Let E be an equivalence. Suppose [a]E ̸= [b]E . Then [a]E is disjoint
from [b]E .

Proof. Follows by proposition [443].

Corollary 445. Let E be an equivalence on A. Suppose [a]E ̸= [b]E . Then [a]E is
disjoint from [b]E .

Proof. Follows by proposition [443].

4.13.2 Quotients

Definition 446. A/E = {[a]E | a ∈ A}.
Proposition 447. ∅/∅ = ∅.
Proposition 448. Let E be an equivalence on A. Suppose B,C ∈ A/E and B ̸= C.
Then B is disjoint from C.

Proof. Take b such that B = [b]E . Take c such that C = [c]E . Then B is disjoint from
C by corollary [445].

Proposition 449. Let E be an equivalence on A. Suppose C ∈ A/E. Then C is
inhabited.

Proof. Take a ∈ A such that C = [a]E . Then a ∈ [a]E . C is inhabited by definitions [18]
and [446] and proposition [438].

Proposition 450. Let E be an equivalence on A. Suppose a ∈ C ∈ A/E. Then a ∈ A.

Proof. Take b ∈ A such that C = [b]E by definition [446]. Then a E b. Thus a ∈ A by
proposition [143] and definition [4].

Corollary 451. Let E be an equivalence on A. ∅ /∈ A/E.
Proposition 452. Let E be an equivalence on A. A/E is a partition.

Proof. ∅ /∈ A/E. For all B,C ∈ A/E such that B ̸= C we have B is disjoint from C.

Proposition 453. Let E be an equivalence on A. A/E is a partition of A.

Proof.
⋃
(A/E) = A by set extensionality.

Definition 454. EP = {(a, b) | a ∈ A, b ∈ A | ∃C ∈ P. a, b ∈ C}.
Proposition 455. Let P be a partition of A. Let a, b ∈ A. Suppose a, b ∈ C ∈ P .
Then a EP b.
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Proposition 456. Let P be a partition of A. EP is reflexive on A.
Proposition 457. Let P be a partition. EP is symmetric.

Proof. Follows by definitions [408] and [454] and axiom [17].

Proposition 458. Let P be a partition. EP is transitive.
Proposition 459. Let P be a partition of A. EP is an equivalence on A.
Proposition 460. Let E be an equivalence on A. Then EA/E = E.

Proof. Follows by set extensionality.

Proposition 461. Let P be a partition of A. Then A/EP = P .

Proof. Follows by set extensionality.

4.14 Closure operations on relations
Definition 462. ReflClX(R) = R ∪ idX .
Proposition 463. ReflClX(R) is reflexive on X.
Definition 464. ReflReducX(R) = R \ idX .
Definition 465. SymCl(R) = R ∪RT.

4.15 Injective relations
Definition 466. R is injective iff for all a, a′, b such that a, a′ R b we have a = a′.
Abbreviation 467. R is left-unique iff R is injective.
Proposition 468. Suppose S ⊆ R. Suppose R is injective. Then S is injective.
Proposition 469. Suppose R is injective. Then R

∣∣
A

is injective.

Proof. R
∣∣
A
⊆ R.

Proposition 470. Suppose R and S are injective. Then S ◦R is injective.
Proposition 471. Then idA is injective.

4.16 Right-unique relations
Definition 472. R is right-unique iff for all a, b, b′ such that a R b, b′ we have b = b′.
Abbreviation 473. R is one-to-one iff R is right-unique and injective.
Proposition 474. Suppose S ⊆ R. Suppose R is right-unique. Then S is right-unique.
Proposition 475. Suppose R and S are right-unique. Then S ◦R is right-unique.

4.17 Left-total relations
Definition 476. R is left-total on A iff for all a ∈ A there exists b such that a R b.
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4.18 Right-total relations
Definition 477. R is right-total on B iff for all b ∈ B there exists a such that a R b.
Abbreviation 478. R is surjective on B iff R is right-total on B.

5 Functions
Abbreviation 479. f is a function iff f is right-unique and f is a relation.
Definition 480. f(x) =

⋃
f→({x}).

Proposition 481. Let f be a function. Suppose (a, b), (a, b′) ∈ f . Then b = b′.

Proof. Follows by right-uniqueness.

Proposition 482. Let f be a function. Suppose (a, b) ∈ f . Then f(a) = b.

Proof. Let B = f→({a}). B = {b′ ∈ ran f | (a, b′) ∈ f} by proposition [326]. b ∈ ran f .
For all b′ ∈ B we have (a, b′) ∈ f . For all b′, b′′ ∈ B we have b′ = b′′ by right-uniqueness.
Then B = {b} by proposition [39]. Then

⋃
B = b. Thus f(a) = b by definition [480].

Proposition 483. Let f be a function. Suppose w ∈ f . Then there exists x ∈ dom f
such that w = (x, f(x)).

Proof. Follows by definitions [251], [277] and [480] and proposition [482].

Proposition 484. Let f be a function. Suppose x ∈ dom f . Then (x, f(x)) ∈ f .

Proof. Follows by propositions [278] and [482].

Proposition 485. Let f be a function. (a, b) ∈ f iff a ∈ dom f and f(a) = b.
Proposition 486. Let f, g be functions. Suppose dom f ⊆ dom g. Suppose for all
x ∈ dom f we have f(x) = g(x). Then f ⊆ g.

Proof. For all x, y such that (x, y) ∈ f we have (x, y) ∈ g. Follows by definitions [4]
and [251].

Proposition 487. (Function extensionality) Let f, g be functions. Suppose
dom f = dom g. Suppose for all x we have f(x) = g(x). Then f = g.

Proof. dom f ⊆ dom g ⊆ dom f . For all x ∈ dom f we have f(x) = g(x). Thus f ⊆ g.
For all x ∈ dom g we have f(x) = g(x). Thus g ⊆ f .

Proposition 488. Let f be a function. b ∈ ran f iff there exists a ∈ dom f such that
f(a) = b.

Proof. Follows by definition [287] and proposition [485].

Abbreviation 489. f is a function on X iff f is a function and X = dom f .
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Abbreviation 490. f is a function to Y iff f is a function and for all x ∈ dom f we
have f(x) ∈ Y .
Proposition 491. Let f be a function to B. Suppose B ⊆ C. Then f is a function to
C.
Proposition 492. Let f be a function to B. Then ran f ⊆ B.

Proof. Follows by definitions [4], [277], [287] and [480], proposition [483], and axiom [134].

Definition 493. Fun(A,B) = {f ∈ Rel(A,B) | A = dom f and f is right-unique}.
Abbreviation 494. f is a function from X to Y iff f ∈ Fun(X,Y ).
Proposition 495. Let f ∈ Fun(A,B). Then f is a relation.

Proof. Follows by definition [493] and proposition [375].

Proposition 496. Let f ∈ Fun(A,B). Then f is a function.
Proposition 497. Fun(A,B) ⊆ Rel(A,B).

Proof. Follows by definitions [4] and [493].

Proposition 498. Let f be a function to B such that A = dom f . Then f ∈ Fun(A,B).

Proof. dom f ⊆ A by proposition [7]. ran f ⊆ B by proposition [492]. Thus f ∈ Rel(A,B)
by proposition [371]. Thus f ∈ Fun(A,B) by definition [493].

Proposition 499. Let f ∈ Fun(A,B). Then f is a function to B such that A = dom f .

Proof. f is a function by proposition [496]. It suffices to show that for all a ∈ dom f
we have f(a) ∈ B by definition [493]. Fix a ∈ dom f . Take b such that f(a) = b. Thus
(a, b) ∈ f by proposition [484]. Now b ∈ ran f by proposition [288]. Finally ran f ⊆ B
by definition [493] and proposition [374].

Proposition 500. Let f ∈ Fun(A,B). Suppose B ⊆ D. Then f ∈ Fun(A,D).

Proof. f ∈ Rel(A,D) by definition [493] and proposition [377]. Follows by defini-
tion [493].

Proposition 501. Let f ∈ Fun(A,B). Let a ∈ A. Then f(a) ∈ B.

Proof. (a, f(a)) ∈ f by propositions [485] and [499]. Thus f(a) ∈ B by definition [493]
and proposition [380].

Proposition 502. Let f ∈ Fun(A,B). Let a ∈ A. Then there exists b ∈ B such that
(a, b) ∈ f .

Proof. (a, f(a)) ∈ f by propositions [485] and [499]. f(a) ∈ B by proposition [501].

Proposition 503. Let f ∈ Fun(A,B). Then ran f ⊆ B.
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Proof. f is a function to B.

5.1 Image of a function
Proposition 504. Let f be a function. Suppose x ∈ dom f ∩X. Then f(x) ∈ f→(X).

Proof. x ∈ X by proposition [83]. Thus (x, f(x)) ∈ f by propositions [82] and [484].

Proposition 505. Let f be a function. Suppose y ∈ f→(X). Then there exists
x ∈ dom f ∩X such that y = f(x).

Proof. Take x ∈ X such that (x, y) ∈ f . Then x ∈ dom f and y = f(x) by proposi-
tions [279] and [485].

Proposition 506. Suppose f is a function. f→(X) = {f(x) | x ∈ dom f ∩X}.

Proof. Follows by propositions [504] and [505].

5.2 Families of functions
Abbreviation 507. F is a family of functions iff every element of F is a function.
Proposition 508. Let F be a family of functions. Suppose that for all f, g ∈ F we
have f ⊆ g or g ⊆ f . Then

⋃
F is a function.

Proof.
⋃

F is a relation by proposition [255]. For all x, y, y′ such that (x, y), (x, y′) ∈
⋃
F

there exists f ∈ F such that (x, y), (x, y′) ∈ f by axiom [42] and definition [4]. Thus⋃
F is right-unique by definition [472].

5.3 The empty function
Proposition 509. ∅ is a function.
Proposition 510. ∅ is a function on ∅.
Proposition 511. ∅ is a function to X.
Proposition 512. ∅ is injective.

5.4 Function composition
Abbreviation 513. g is composable with f iff ran f ⊆ dom g.
Proposition 514. Suppose f and g are right-unique. Then g ◦ f is a function.
Proposition 515. Let f, g be functions. Suppose g is composable with f . Let x ∈
dom f . Then (g ◦ f)(x) = g(f(x)).

Proof. (x, g(f(x))) ∈ g ◦ f by definitions [4], [287] and [339] and proposition [484]. g ◦ f
is a function by proposition [514]. Thus (g ◦ f)(x) = g(f(x)) by proposition [482].
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Proposition 516. Let f, g be functions. Suppose g is composable with f . dom g ◦ f =
f←(dom g).

Proof. Every element of dom g ◦ f is an element of f←(dom g) by definitions [277], [328]
and [339] and axiom [134]. Follows by set extensionality.

Proposition 517. Let f, g be functions. Suppose ran f = dom g. dom g ◦ f = dom f .

Proof. Every element of dom g ◦ f is an element of dom f . Follows by set extensionality.

Proposition 518. Let f, g be functions. Suppose g is composable with f . Suppose
y ∈ g→(ran f). Then y ∈ ran g ◦ f .

Proof. Take x ∈ ran f such that (x, y) ∈ g. Take x′ ∈ dom f such that (x′, x) ∈ f . Then
(x′, y) ∈ g ◦ f . Follows by proposition [289].

Proposition 519. Let f, g be functions. Suppose g is composable with f . Suppose
y ∈ ran g ◦ f . Then y ∈ g→(ran f).

Proof. Take x ∈ dom f such that (x, y) ∈ g ◦ f by definitions [277], [287] and [339]
and proposition [343]. f(x) ∈ ran f . (f(x), y) ∈ g by propositions [343] and [482]
and definition [480]. Follows by proposition [317].

Proposition 520. Let f, g be functions. Suppose g is composable with f . Then
ran g ◦ f = g→(ran f).

Proof. Follows by set extensionality.

Proposition 521. Let f, g be functions. Suppose ran f = dom g. Then ran g◦f = ran g.

Proof.

ran g ◦ f = g→(ran f) [by propositions [7] and [520]]
= g→(dom g)

= ran g [by proposition [320]]

Proposition 522. Let f, g be functions. Let A be a set. Suppose ran f ⊆ dom g.
Suppose c ∈ g ◦ f→(A). Then c ∈ g→(f→(A)).

Proof. Take a ∈ A such that (a, c) ∈ g ◦ f . Take b such that (a, b) ∈ f and (b, c) ∈ g.
Then b ∈ f→(A). Follows by proposition [317].

Proposition 523. Let f, g be functions. Let A be a set. Suppose ran f ⊆ dom g. Then
g ◦ f→(A) = g→(f→(A)).
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Proof. For all c we have c ∈ g→(f→(A)) iff c ∈ g◦f→(A) by propositions [317] and [343].
Follows by extensionality.

Proposition 524. Let f be a function. Let A be a set. f
∣∣
A

is a function.
Proposition 525. Let f be a function. Suppose A ⊆ dom f . Let a ∈ A. Then
(f
∣∣
A
)(a) = f(a).

Proof. Then (a, f(a)) ∈ f . Then (a, f(a)) ∈ f
∣∣
A

by proposition [349]. Thus (f
∣∣
A
)(a) =

f(a).

Proposition 526. Suppose x /∈ dom f . Then f(x) = ∅.

Proof. f→({x}) = ∅ by axioms [2] and [17] and propositions [279] and [324]. Follows by
definition [480] and proposition [44].

5.5 Injections
Proposition 527. Suppose f is a function. f is injective iff for all x, y ∈ dom f we
have f(x) = f(y) =⇒ x = y.

Proof. Follows by definition [466] and proposition [485].

Abbreviation 528. f is an injection iff f is an injective function.
Definition 529. Inj(A,B) = {f ∈ Fun(A,B) | for all x, y ∈ A such that f(x) = f(y) we have x = y}.

5.6 Surjections
Abbreviation 530. f is a surjection onto Y iff f is a function such that f is surjective
on Y .
Definition 531. Surj(A,B) = {f ∈ Fun(A,B) | for all b ∈ B there exists a ∈ A such that f(a) = b}.
Abbreviation 532. f is a surjection from A to B iff f ∈ Surj(A,B).
Lemma 533. Let f be a function. Then f is surjective on ran f .

Proof. It suffices to show that for all y ∈ ran f there exists x ∈ dom f such that f(x) =
y. Fix y ∈ ran f . Take x such that (x, y) ∈ f . Then x ∈ dom f and f(x) = y by
definition [277] and proposition [485].

Lemma 534. Let f ∈ Surj(A,B). Then f ∈ Fun(A,B).
Lemma 535. Let f ∈ Fun(A,B). Then f ∈ Surj(A, ran f).

Proof. f ∈ Rel(A, ran f) by definition [493] and proposition [382]. Thus f ∈ Fun(A, ran f)
by definition [493]. It suffices to show that for all b ∈ ran f there exists a ∈ A such that
f(a) = b by definition [531]. Fix b ∈ ran f . Take a such that (a, b) ∈ f . Thus f(a) = b
by propositions [485] and [499]. We have a ∈ dom f = A. Follows by assumption.

Corollary 536. Let f ∈ Surj(A,B). Then ran f = B.
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Proof. We have f is a function by definition [531] and proposition [496]. Now ran f ⊆ B
by definition [531] and proposition [503]. It suffices to show that every element of B is
an element of ran f . It suffices to show that for all b ∈ B there exists a ∈ dom f such
that f(a) = b by proposition [488]. Fix b ∈ B. Take a ∈ A such that f(a) = b by
definition [531]. Then dom f = A by definition [531] and proposition [499].

Corollary 537. Let f ∈ Fun(A,B). Then f ∈ Surj(A,B) iff ran f = B.

Proof. Follows by definition [531], lemma [535], and corollary [536].

Proposition 538. Let f ∈ Surj(A,B). Let g ∈ Surj(B,C). Then g ◦ f ∈ Surj(A,C).

Proof. dom f = A by definitions [493] and [531]. dom g = B = ran f by definitions [493]
and [531] and corollary [536]. dom g ◦ f = A by lemma [534] and propositions [496]
and [517]. Omitted.

5.7 Bijections
Definition 539. Bi(A,B) = {f ∈ Surj(A,B) | f is injective}.
Abbreviation 540. f is a bijection from A to B iff f ∈ Bi(A,B).
Proposition 541. Every element of Bi(A,B) is an element of Fun(A,B).

Proof. Follows by definitions [531] and [539].

Proposition 542. Every element of Bi(A,B) is a function.

Proof. Follows by propositions [496] and [541].

Proposition 543. Let f ∈ Bi(A,B). Then dom f = A.

Proof. f ∈ Fun(A,B) by proposition [541]. Follows by definition [493].

Proposition 544. Let f be a bijection from A to B. Let g be a bijection from B to
C. Then g ◦ f is a bijection from A to C.

Proof. g◦f ∈ Surj(A,C) by definition [539] and proposition [538]. g◦f is an injection.

5.8 Converse as a function
Proposition 545. Let f be a function. Then fT is injective.
Proposition 546. Suppose f is injective. Then fT is a function.
Proposition 547. Let f be a bijection from A to B. Then fT is a function.

Proof. Follows by definition [539] and proposition [546].

Proposition 548. Let f be a bijection from A to B. Then fT ∈ Fun(B,A).
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Proof. dom fT = ran f = B by definition [539], proposition [297], and corollary [536].
Omitted.

Proposition 549. Let f be a bijection from A to B. Then fT ∈ Surj(B,A).

Proof. We have fT ∈ Fun(B,A) by proposition [548]. It suffices to show that ran fT = A
by corollary [537]. We have dom f = A by proposition [543]. Thus ran fT = A by
proposition [298].

Proposition 550. Let f be a bijection from A to B. Then fT is a bijection from B
to A.

Proof. fT ∈ Fun(B,A) by proposition [548]. fT is injective by propositions [542]
and [545]. fT ∈ Surj(B,A) by proposition [549]. Follows by definition [539].

5.8.1 Inverses of a function

Abbreviation 551. g is a left inverse of f iff for all x ∈ dom f we have g(f(x)) = x.
Abbreviation 552. g is a right inverse of f iff f ◦ g = iddom g.
Abbreviation 553. g is a right inverse of f on B iff f ◦ g = idB.
Proposition 554. Let f be an injection. Then fT is a left inverse of f .

Proof. fT is a function by proposition [546].
Omitted.

5.9 Identity function
Proposition 555. idA is right-unique.

Proof. Follows by definitions [383] and [472] and axiom [134].

Proposition 556. idA is a function.
Proposition 557. idA is a function on A.
Proposition 558. idA is a function to A.
Proposition 559. idA is a function from A to A.

Proof. idA ∈ Rel(A,A) by proposition [391]. Follows by definition [493] and proposi-
tions [557] and [558].

Proposition 560. Suppose a ∈ A. Suppose f = idA. Then f(a) = a.

Proof. (a, a) ∈ idA by proposition [384]. Follows by propositions [482] and [556].

Proposition 561. idA ∈ Fun(A,A).

Proof. idA is a function. idA ∈ Rel(A,A). dom idA ⊆ A.
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Proposition 562. idA ∈ Surj(A,A).

Proof. We have idA ∈ Fun(A,A) by proposition [561]. Omitted.

Proposition 563. idA ∈ Bi(A,A).

Proof. idA ∈ Surj(A,A) by proposition [562]. idA is injective by proposition [471]. Fol-
lows by definition [539].

6 Transitive sets
We use the word transitive to talk about sets as relations, so we will explicitly talk about
∈-transitivity here.
Definition 564. A set A is ∈-transitive iff for all x, y such that x ∈ y ∈ A we have
x ∈ A.
Proposition 565. A is ∈-transitive iff for all a ∈ A we have a ⊆ A.
Proposition 566. A is ∈-transitive iff A ⊆ Pow(A).

Proof. For all a ∈ A we have a ⊆ A ⇐⇒ a ∈ Pow(A). Follows by propositions [9]
and [565], definition [4], and axiom [201].

Proposition 567. A is ∈-transitive iff
⋃
A+ = A.

Proof. Follows by definitions [4], [169] and [564], propositions [8], [179], [205], [206]
and [566], and axiom [42].

Proposition 568. A is ∈-transitive iff
⋃
A ⊆ A.

Proposition 569. Suppose A is ∈-transitive. Suppose {a, b} ∈ A. Then a, b ∈ A.

6.0.1 Closure properties of ∈-transitive sets

Proposition 570. ∅ is ∈-transitive.
Proposition 571. Suppose A and B are ∈-transitive. Then A ∪B is ∈-transitive.
Proposition 572. Let A,B be ∈-transitive sets. Then A ∩B is ∈-transitive.
Proposition 573. Let A be an ∈-transitive set. Then A+ is ∈-transitive.
Proposition 574. Let A be an ∈-transitive set. Then

⋃
A is ∈-transitive.

Proposition 575. Suppose every element of A is an ∈-transitive set. Then
⋃
A is

∈-transitive.

Proof. Follows by definition [564] and axiom [42].

Proposition 576. Suppose every element of A is an ∈-transitive set. Then
⋂
A is

∈-transitive.

Proof. Follows by definitions [47] and [564] and proposition [575].
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7 Ordinals
Definition 577. α is an ordinal iff α is ∈-transitive and every element of α is ∈-
transitive.
Proposition 578. Suppose α is ∈-transitive. Suppose every element of α is ∈-
transitive. Then α is an ordinal.
Proposition 579. Let α be an ordinal. Then α is ∈-transitive.
Proposition 580. Let α be an ordinal. Suppose A ∈ α. Then A is ∈-transitive.
Proposition 581. Let α be an ordinal. Suppose β ∈ α. Then β is an ordinal.
Proposition 582. Suppose α+ is an ordinal. Then α is an ordinal.
Proposition 583. Let α be an ordinal. Suppose β ⊆ α. Suppose β is ∈-transitive.
Then β is an ordinal.

Proof. Follows by definitions [4] and [577].

Proposition 584. Let α, β be ordinals. Suppose α ∈ β. Then α ⊆ β.
Proposition 585. Let α be an ordinal. Suppose γ ∈ β ∈ α. Then γ ∈ α.

Proof. Follows by definitions [564] and [577].

Proposition 586. Let β be an ordinal. Suppose α ∈ β. Then α+ ⊆ β.
Abbreviation 587. α < β iff β is an ordinal and α ∈ β.
Abbreviation 588. α ≤ β iff β is an ordinal and α ⊆ β.
Lemma 589. Let α, β be sets. Suppose α < β. Then α is an ordinal.

Proof. Follows by proposition [581].

We already have global irreflexivity and asymmetry of ∈. ∈ is transitive on ordinals
by definition. To show that ∈ is a strict total order it only remains to show that ∈ is
connex.
Proposition 590. For all ordinals α, β we have α ∈ β ∨ β ∈ α ∨ α = β.

Proof by ∈-induction on α. Assume α is an ordinal. Show for all ordinals γ we have
α ∈ γ ∨ γ ∈ α ∨ α = γ. Subproof. [Proof by ∈-induction on γ] Assume γ is an ordinal.
Follows by axiom [2] and definitions [564] and [577]. □

Proposition 591. Let α, β be ordinals. Suppose α ⊂ β. Then α ∈ β.

Proof. β \ α is inhabited. Take γ such that γ is an ∈-minimal element of β \ α. Now
γ ∈ β by proposition [108]. Hence γ ⊆ β by definition [577] and proposition [565]. For
all δ ∈ β \α we have δ /∈ γ. Thus γ \α = ∅. Hence γ ⊆ α. It suffices to show that for all
δ ∈ α we have δ ∈ γ. Suppose not. Take δ ∈ α such that δ /∈ γ. Now if δ = γ or γ ∈ δ,
then γ ∈ α by definition [577] and propositions [9], [565], [581] and [590].
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Proposition 592. Let α, β be ordinals. Suppose α ∈ β. Then α ⊂ β.

Proof. α ⊆ β.

Proposition 593. Let α, β be ordinals. Suppose α ≤ β. Then α ⊆ β.

Proof. Case: α = β. Trivial.
Case: α < β. α ⊂ β.

Proposition 594. Let α, β be ordinals. Then α ∈ β or β ⊆ α.
Proposition 595. Let α, β be ordinals. Then α ⊆ β or β ⊆ α.
Proposition 596. Let α, β be ordinals. Suppose α ⊆ β. Then α ∈ β or α = β.
Corollary 597. Let α, β be ordinals. Then (α ⊂ β ∨ β ⊂ α) ∨ α = β.
Proposition 598. Let α, β be ordinals. Suppose neither α ∈ β nor β ∈ α. Then
α = β.

Proof. Neither α ⊂ β nor β ⊂ α.

Proposition 599. Let α, β be ordinals. Then (α ∈ β ∨ β ∈ α) ∨ α = β.

Proof. Suppose not. Then neither α ∈ β nor β ∈ α. Thus α = β by proposition [598].
Contradiction.

Corollary 600. Let α, β be ordinals. Suppose neither α < β nor β < α. Then α = β.

Proof. Follows by proposition [598].

Corollary 601. Let α, β be ordinals. Then α ∈ β or β ⊆ α.

7.0.1 Construction of ordinals

Proposition 602. ∅ is an ordinal.
Proposition 603. Let α be an ordinal. α+ is an ordinal.

Proof. α+ is ∈-transitive by definition [577] and proposition [573]. For every β ∈ α we
have that β is ∈-transitive.

Proposition 604. α is an ordinal iff α+ is an ordinal.
Proposition 605. Let α be an ordinal. Then α ∈ α+.
Corollary 606. Let α be an ordinal. Then α < α+.
Proposition 607. Let α, β be ordinals. Suppose α ∈ β. Then α ⊆ β+.

Proof. α ⊂ β. In particular, α ⊆ β. Hence α ⊆ cons(β, β).

Proposition 608. Let α be an ordinal. Then
⋃
α is an ordinal.
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Proof. For all x, y such that x ∈ y ∈
⋃
α we have x ∈

⋃
α by proposition [43], axiom [42],

and definitions [564] and [577]. Thus
⋃
α is ∈-transitive. Every element of

⋃
α is ∈-

transitive.

Lemma 609. Let α be an ordinal. Then
⋃
α ⊆ α.

Proof. Follows by definition [577] and proposition [568].

Proposition 610. Let α, β be ordinals. Then α ∪ β is an ordinal.

Proof. α∪β is ∈-transitive by proposition [571] and definition [577]. Every element of α∪
β is ∈-transitive by definitions [564] and [577] and axiom [56]. Follows by definition [577].

Proposition 611. For all ordinals α we have α = ∅ or ∅ ∈ α.

Proof by ∈-induction. Straightforward.

Proposition 612. Let A be a set. Suppose that for every α ∈ A we have α is an
ordinal. Suppose that A is ∈-transitive. Then A is an ordinal.
Theorem 613. (Burali-Forti antimony) There exists no set Ω such that for all α
we have α ∈ Ω iff α is an ordinal.

Proof. Suppose not. Take Ω such that for all α we have α ∈ Ω iff α is an ordinal. For all
x, y such that x ∈ y ∈ Ω we have x ∈ Ω. Thus Ω is ∈-transitive. Thus Ω is an ordinal.
Therefore Ω ∈ Ω. Contradiction.

Proposition 614. Let A be an inhabited set. Suppose for every α ∈ A we have α is
an ordinal. Then

⋂
A is an ordinal.

Proof. It suffices to show that
⋂
A is ∈-transitive.

Proposition 615. Let A be an inhabited set. Suppose for every α ∈ A we have α is
an ordinal. Then for all α ∈ A we have

⋂
A ⊆ α.

Proposition 616. Let A be an inhabited set. Suppose for every α ∈ A we have α is
an ordinal. Then

⋂
A ∈ A.

Proof. Follows by propositions [48], [53], [246], [596] and [614].

Proposition 617. Let A be an inhabited set. Suppose for every α ∈ A we have α is
an ordinal. Then

⋂
A is an ∈-minimal element of A.

Proof. For all α ∈ A we have
⋂
A ⊆ α.

Proposition 618. Let A be an inhabited set. Suppose for every α ∈ A we have α is
an ordinal. Then for all α ∈ A we have

⋂
A = α or

⋂
A ∈ α.

Proof. For all α ∈ A we have
⋂
A ⊆ α.
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Proposition 619. Let α, β be ordinals. Then α ∩ β is an ordinal.

Proof. α ∩ β is ∈-transitive by definitions [80], [564] and [577]. Every element of α ∩ β
is ∈-transitive by definitions [80], [564] and [577]. Follows by definition [577].

7.0.2 Limit and successor ordinals

Definition 620. λ is a limit ordinal iff ∅ < λ and for all α ∈ λ we have α+ ∈ λ.
Definition 621. α is a successor ordinal iff there exists an ordinal β such that α = β+.
Lemma 622. Let α be an ordinal such that ∅ < α. Then α is a limit ordinal or α is a
successor ordinal.

Proof. Case: α is a limit ordinal. Trivial.
Case: α is not a limit ordinal. Take β such that β ∈ α and β+ /∈ α by definition [620].

Lemma 623. ∅ is not a successor ordinal.
Lemma 624. ∅ is not a limit ordinal.

Proof. Suppose not. Then ∅ < ∅ by axiom [17] and definition [620]. Thus ∅ ∈ ∅.
Contradiction.

Lemma 625. Let λ be a limit ordinal. Let α ∈ λ. Then α+ ∈ λ.

Proof. Follows by definition [620].

Lemma 626. Let λ be a limit ordinal. Then
⋃
λ = λ.

Proof.
⋃

λ ⊆ λ by definition [620] and lemma [609]. For all α ∈ λ we have α ∈ α+ ∈ λ by
proposition [170] and lemma [625]. Thus λ ⊆

⋃
λ by definition [4] and proposition [43].

Follows by proposition [8].

7.1 Natural numbers as ordinals
Lemma 627. Let n ∈ N . Suppose n ̸= ∅. Then n is a successor ordinal.

Proof. Let M = {m ∈ N | m = ∅ or m is a successor ordinal}. M is an inductive set
by propositions [602] and [603], axiom [633], and definition [621]. Now M ⊆ N ⊆ M by
definition [4] and axiom [634]. Thus M = N . Follows by definition [4].

Lemma 628. N is ∈-transitive.

Proof. Let M = {m ∈ N | for all n ∈ m we have n ∈ N}. ∅ ∈ M . For all n ∈ M we
have n+ ∈ M by axiom [633] and definition [169]. Thus M is an inductive set. Now
M ⊆ N ⊆ M by definition [4] and axiom [634]. Hence N = M .

Lemma 629. Every natural number is an ordinal.
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Proof. Follows by propositions [174], [582] and [603], axiom [633], lemma [627], and def-
inition [621].

Lemma 630. N is an ordinal.

Proof. Follows by lemmas [628] and [629] and proposition [612].

Lemma 631. N is a limit ordinal.

Proof. ∅ < N . If n ∈ N , then n+ ∈ N .

8 Natural numbers
Abbreviation 632. A is an inductive set iff ∅ ∈ A and for all a ∈ A we have a+ ∈ A.
Axiom 633. N is an inductive set.
Axiom 634. Let A be an inductive set. Then N ⊆ A.
Abbreviation 635. n is a natural number iff n ∈ N .

9 Cardinality
Definition 636. X is finite iff there exists a natural number k such that there exists
a bijection from k to X.
Abbreviation 637. X is infinite iff X is not finite.

10 Magmas
Struct 638. A magma A is a onesorted structure equipped with

1. mul

such that

1. for all a, b ∈ A we have mulA(a, b) ∈ A.

Abbreviation 639. a · b = mul(a, b).
Abbreviation 640. a is an idempotent element of A iff a ∈ A and mulA(a, a) = a.
Definition 641. Idempotent(A) = {a ∈ A | mulA(a, a) = a}.
Abbreviation 642. a commutes with b iff a · b = b · a.
Definition 643. A is a submagma of B iff A is a magma and B is a magma and A ⊆ B
and mulA ⊆ mulB.
Proposition 644. Suppose A is a submagma of B. Suppose B is a submagma of C.
Then A is a submagma of C.
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Proof. Follows by definition [643] and proposition [11].

Struct 645. A unital magma A is a magma equipped with

1. e

such that

1. eA ∈ A.

2. for all a ∈ A we have mulA(a, eA) = a.

3. for all a ∈ A we have mulA(eA, a) = a.

Proposition 646. Let A be a unital magma. Then mul(e, e) = e.
Proposition 647. Let A be a unital magma. Let e be a set such that e ∈ A and for
all x ∈ A we have mul(x, e) = x = mul(e, x). Then e = e.

Proof. Follows by items [1] and [3].

Definition 648. (Left orbit) A · x = {mulA(a, x) | a ∈ A}.
Proposition 649. Let A be a magma. Let e, f ∈ A. Suppose A · e = A · f . Let x ∈ A.
Then there exists y ∈ A such that x · e = y · f .

Proof. We have x · e ∈ A · e by definition [648]. Thus x · e ∈ A · f by assumption. Take
y ∈ A such that x · e = y · f by definition [648].

11 Semigroups
Struct 650. A semigroup A is a magma such that

1. for all a, b, c we have mulA(a,mulA(b, c)) = mulA(mulA(a, b), c).

12 Regular semigroups
Struct 651. A regular semigroup A is a semigroup such that

1. for all a there exists b ∈ A such that mulA(a,mulA(b, a)) = a.

13 Inverse semigroups
Struct 652. An inverse semigroup A is a regular semigroup such that

1. for all a, b ∈ Idempotent(A) we have mulA(a, b) = mulA(b, a).

Proposition 653. Suppose A is an inverse semigroup. Then A is a semigroup.
Proposition 654. Suppose A is an inverse semigroup. Then A is a regular semigroup.
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Proposition 655. Let A be an inverse semigroup. Let e, f ∈ Idempotent(A). Suppose
for all x ∈ A there exists y ∈ A such that x · e = y · f . Suppose for all x ∈ A there exists
y ∈ A such that x · f = y · e. Then e = f .

Proof. Take x, y ∈ A such that e = x · f and f = y · e by definition [641].

e = x · f [by assumption]
= x · (f · f) [by definition [641]]
= (x · f) · f [by item [1] and proposition [653]]
= e · f [by assumption]
= f · e [by commutativity of idempotent elements]
= (y · e) · e [by assumption]
= y · (e · e) [by item [1] and proposition [653]]
= y · e [by definition [641]]
= f [by assumption]

Abbreviation 656. R is an order iff R is an antisymmetric quasiorder.
Abbreviation 657. R is an order on A iff R is an antisymmetric quasiorder on A.
Abbreviation 658. R is a strict order iff R is transitive and asymmetric.
Struct 659. An ordered set X is a quasiordered set such that

1. ≤X is antisymmetric.

Definition 660. StrictOrderFromOrder(R) = {w ∈ R | fstw ̸= sndw}.
Definition 661. OrderFromStrictOrderA(R) = R ∪ idA.
Proposition 662. (a, b) ∈ StrictOrderFromOrder(R) iff (a, b) ∈ R and a ̸= b.

Proof. Follows by definition [660] and axioms [139] and [140].

Proposition 663. OrderFromStrictOrderA(R) is reflexive on A.
Proposition 664. Suppose (a, b) ∈ R. Then (a, b) ∈ OrderFromStrictOrderA(R).

Proof. R ⊆ OrderFromStrictOrderA(R).

Proposition 665. Suppose (a, b) ∈ OrderFromStrictOrderA(R). Then (a, b) ∈ R or
a = b.

Proof. Follows by definitions [383] and [661], axiom [56], and propositions [31] and [662].

Proposition 666. (a, b) ∈ OrderFromStrictOrderA(R) iff (a, b) ∈ R or a = b ∈ A.
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Proposition 667. Suppose R is an order. Then StrictOrderFromOrder(R) is a strict
order.

Proof. StrictOrderFromOrder(R) is asymmetric. StrictOrderFromOrder(R) is transitive.

Proposition 668. Suppose R is a strict order. Suppose R is a binary relation on A.
Then OrderFromStrictOrderA(R) is an order on A.

Proof. OrderFromStrictOrderA(R) is antisymmetric. OrderFromStrictOrderA(R) is tran-
sitive by definition [413] and proposition [666]. OrderFromStrictOrderA(R) is reflexive on
A.

Proposition 669. ⊆A is antisymmetric.

Proof. Follows by definitions [396] and [407], axiom [134], and proposition [8].

Proposition 670. ⊆A is an order on A.

Proof. ⊆A is a quasiorder on A by proposition [429]. ⊆A is antisymmetric by proposi-
tion [669].

Struct 671. A meet semilattice X is a partial order equipped with

1. ⊓

such that

1. for all x, y ∈ X we have ⊓X(x, y) ∈ X.

2. for all x, y ∈ X we have ⊓X(x, y) ≤X x, y.

3. for all a, x, y ∈ X such that a ≤X x, y we have a ≤X ⊓X(x, y).

Proposition 672. Let X be a meet semilattice. Then ⊓(x, x) = x.

Proof. ⊓(x, x) ≤ x. x ≤X x, x. Thus x ≤X ⊓(x, x).

14 Topological spaces
Struct 673. A topological space X is a onesorted structure equipped with

1. O

such that

1. OX is a family of subsets of X.

2. ∅ ∈ OX .

3. X ∈ OX .
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4. For all A,B ∈ OX we have A ∩B ∈ OX .

5. For all F ⊆ OX we have
⋃
F ∈ OX .

Abbreviation 674. U is open iff U ∈ O.
Abbreviation 675. U is open in X iff U ∈ OX .
Proposition 676. Let X be a topological space. Suppose A, B are open. Then A∪B
is open.

Proof. {A,B} ⊆ O.
⋃
{A,B} is open.

⋃
{A,B} = A ∪B.

Definition 677. (Interiors) IntX A = {U ∈ OX | U ⊆ A}.
Definition 678. (Interior) intX A =

⋃
IntX A.

Proposition 679. (Interior) Suppose U ∈ OX and a ∈ U ⊆ A. Then a ∈ intX A.

Proof. U ∈ IntX A.

Proposition 680. (Interior) Suppose a ∈ intX A. Then there exists U ∈ OX such
that a ∈ U ⊆ A.

Proof. Take U ∈ IntX A such that a ∈ U .

Proposition 681. (Interior) a ∈ intX A iff there exists U ∈ OX such that a ∈ U ⊆
A.

Proof. Follows by propositions [679] and [680].

Proposition 682. Let X be a topological space. Suppose U is open in X. Then
intX U = U .

Proof. U ∈ IntX U . Follows by definition [4] and propositions [3] and [681].

Proposition 683. Let X be a topological space. Then intX A is open.

Proof. IntX A ⊆ OX .

Proposition 684. Then intX A ⊆ A.
Proposition 685. Let X be a topological space. Suppose U ⊆ A ⊆ X. Suppose U is
open. Then U ⊆ intX A.
Proposition 686. Let X be a topological space. Suppose intX A = A. Then A is
open.
Corollary 687. Let X be a topological space. Then intX A = A iff A is open in X.
Proposition 688. Let X be a topological space. intX X = X.

Proof. X ∈ OX . X ⊆ X by proposition [7]. Thus X ∈ IntX X by definition [677].
Follows by set extensionality.
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Proposition 689. Let X be a topological space. Then intX A ∈ Pow(X).

Proof. We have IntX A ⊆ Pow(X). Thus intX A ⊆ X by definition [678] and proposi-
tion [206].

14.1 Closed sets
Definition 690. A is closed in X iff X \A is open in X.
Abbreviation 691. A is clopen in X iff A is open in X and closed in X.
Proposition 692. Let X be a topological space. Then ∅ is closed in X.

Proof. X \ ∅ = X.

Proposition 693. Let X be a topological space. Then ∅ is closed in X.

Proof. X \X = ∅.

Definition 694. (Closed sets) CX = {A ∈ Pow(X) | A is closed in X}.
Proposition 695. Let X be a topological space. Let U ∈ OX . Then X \ U ∈ CX .

Proof. X \U ∈ Pow(X). U ⊆ X by item [1]. Hence X \(X \U) = U by proposition [114].
X \ U is closed in X.

Definition 696. (Closed covers) ClX A = {D ∈ Pow(X) | A ⊆ D and D is closed in X}.
Definition 697. (Closure) clX A =

⋂
ClX A.

Proposition 698. Let X be a topological space. Then clX ∅ = ∅.

Proof. ∅ ∈ ClX ∅.

Proposition 699. Let X be a topological space. Then clX X = X.

Proof. For all D ∈ ClX X we have X = D by axiom [201], definition [696], and propo-
sition [8]. Now X ∈ ClX X. Thus ClX X = {X} by proposition [39]. Follows by
proposition [54] and definition [697].

Proposition 700. X \ intX A = clX (X \A).

Proof. Omitted.

Definition 701. (Frontier) frX A = clX A \ intX A.
Proposition 702. frX A = clX A ∩ clX (X \A).

Proof. Omitted.

Proposition 703. Let X be a topological space. Then frX ∅ = ∅.

Proof. Follows by set extensionality.
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Proposition 704. Let X be a topological space. Then frX X = ∅.

Proof. frX X = X \X by definition [701] and propositions [688] and [699]. Follows by
proposition [112].

Definition 705. NXx = {U ∈ OX | x ∈ U}.

14.2 Topological basis
Abbreviation 706. C covers X iff for all x ∈ X there exists U ∈ C such that x ∈ U .
Proposition 707. Suppose C covers X. Then X ⊆

⋃
C.

Proposition 708. Suppose X ⊆
⋃

C. Then C covers X.
Abbreviation 709. B is a topological prebasis for X iff

⋃
B = X.

Proposition 710. B is a topological prebasis for X iff B is a family of subsets of X
and B covers X.

Proof. If B is a family of subsets of X and B covers X, then
⋃
B = X by propositions [8],

[45] and [707]. If
⋃
B = X, then B is a family of subsets of X and B covers X by

propositions [7], [707] and [708].

Definition 711. B is a topological basis for X iff B is a topological prebasis for X
and for all U, V, x such that U, V ∈ B and x ∈ U, V there exists W ∈ B such that
x ∈ W ⊆ U, V .

14.3 Disconnections
Definition 712. DisconnectionsX = {p ∈ BipartitionsX | fst p, snd p ∈ OX}.
Abbreviation 713. D is a disconnection of X iff D ∈ DisconnectionsX.
Definition 714. X is disconnected iff there exist U, V ∈ OX such that X is partitioned
by U and V .
Proposition 715. Let X be a topological space. Suppose X is disconnected. Then
there exists a disconnection of X.

Proof. Take U, V ∈ OX such that X is partitioned by U and V by definition [714]. Then
(U, V ) is a bipartition of X. Thus (U, V ) is a disconnection of X by definition [712]
and propositions [144] and [151].

Proposition 716. Let X be a topological space. Let D be a disconnection of X. Then
X is disconnected.

Proof. fstD, sndD ∈ OX . X is partitioned by fstD and sndD.

Abbreviation 717. X is connected iff X is not disconnected.
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